
Program to provide bonus mark if the category is output

sports

m=eval(input(“enter ur mark out of 100”))

c=input(“enter ur categery G/S”)

enter ur mark out of 100

85

if(c==”S”):

m=m+5

print(“mark is”,m)

enter ur categery G/S

S

mark is 90

UNIT III

CONTROL FLOW, FUNCTIONS

Conditionals: Boolean values and operators, conditional (if), alternative (if-else),chained conditional (if-elif-

else); Iteration: state, while, for, break, continue, pass; Fruitful functions: return values, parameters, scope: local

and global, composition ,recursion; Strings: string slices, immutability, string functions and methods, string

module; Lists as arrays. Illustrative programs: square root, gcd, exponentiation, sum the array of

\numbers, linear search, binary search.

1) Conditional Statements

 Conditional if

 Alternative if… else

 Chained if…elif…else

 Nested if….else

Conditional (if):

conditional (if) is used to test a condition, if the condition is true the statements inside if will be

executed.

syntax:

Flowchart:

61

Alternative (if-else):

In the alternative the condition must be true or false. In this else statement can be combined with if
statement. The else statement contains the block of code that executes when the condition is false. If the

condition is true statements inside the if get executed otherwise else part gets executed. The alternatives are
called branches, because they are branches in the flow of execution.

syntax:

62

Flowchart:

Examples:

1. odd or even number

2. positive or negative number

3. leap year or not

Odd or even number Output

n=eval(input("enter a number"))

if(n%2==0):

print("even number")

else:

print("odd number")

enter a number4

even number

positive or negative number Output

n=eval(input("enter a number"))

if(n>=0):

print("positive number")

else:

print("negative number")

enter a number8

positive number

leap year or not Output

y=eval(input("enter a year"))

if(y%4==0):

print("leap year")

else:

print("not leap year")

enter a year2000

leap year

Chained conditionals (if-elif-else)

 The elif is short for else if.

 This is used to check more than one condition.

 If the condition1 is False, it checks the condition2 of the elif block. If all the conditions are

False, then the else part is executed.

 Among the several if...elif...else part, only one part is executed according to the

condition. The if block can have only one else block. But it can have multiple elif

blocks.

 The way to express a computation like that is a chained conditional.

syntax:

63

Flowchart:

student mark system Output

mark=eval(input("enter ur mark:"))

if(mark>=90):

print("grade:S")

enter ur mark:78

grade:B

elif(mark>=80):

print("grade:A")

elif(mark>=70):

print("grade:B")

elif(mark>=50):

print("grade:C")

else:

print("fail")

traffic light system Output

colour=input("enter colour of light:") enter colour of light:green

if(colour=="green"):

print("GO")

GO

elif(colour=="yellow"):

print("GET READY")

else:

print("STOP")

Example:

1. student mark system

2. traffic light system

64

Nested conditionals

One conditional can also be nested within another. Any number of condition can be nested inside

one another. In this, if the condition is true it checks another if condition1. If both the conditions are true

statement1 get executed otherwise statement2 get execute. if the condition is false statement3 gets

executed

Syntax

Flowchart:

Example:

1. greatest of three numbers

2. positive negative or zero

greatest of three numbers output

enter the value of a 9

enter the value of a 1

enter the value of a 8

the greatest no is 9

a=eval(input(“enter the value of a”))

b=eval(input(“enter the value of b”))

c=eval(input(“enter the value of c”))

if(a>b):

if(a>c):

print(“the greatest no is”,a)

else:

print(“the greatest no is”,c)

else:

if(b>c):

print(“the greatest no is”,b)

else:

print(“the greatest no is”,c)

positive negative or zero output

enter the value of n:-9

the number is negative

n=eval(input("enter the value of n:"))

if(n==0):

print("the number is zero")

else:

if(n>0):

print("the number is positive")

65

else:

print("the number is negative")

2.Iteration Or Control Statements.

 state

 while

 for

 break

 continue

 pass

State:

Transition from one process to another process under specified condition with in a time is called

state.

66

While loop:

While loop statement in Python is used to repeatedly executes set of statement as long as a given

condition is true.

In while loop, test expression is checked first. The body of the loop is entered only if the test

expression is True. After one iteration, the test expression is checked again. This process continues

until the test expression evaluates to False.

In Python, the body of the while loop is determined through indentation.

The statements inside the while start with indentation and the first unintended line marks the end.

Syntax:

Flow chart:

Sum of n numbers: output

n=eval(input("enter n"))

i=1

sum=0

enter n

10

55

while(i<=n):

sum=sum+i

i=i+1

print(sum)

Factorial of a numbers: output

n=eval(input("enter n")) enter n

i=1

fact=1

5

120

while(i<=n):

fact=fact*i

i=i+1

print(fact)

Sum of digits of a number: output

n=eval(input("enter a number")) enter a number

123

6

sum=0

while(n>0):

a=n%10

sum=sum+a

n=n//10

print(sum)

67

Examples:

1. program to find sum of n numbers:

2. program to find factorial of a number

3. program to find sum of digits of a number:

4. Program to Reverse the given number:

5. Program to find number is Armstrong number or not

6. Program to check the number is palindrome or not

Reverse the given number: output

enter a number

123

321

n=eval(input("enter a number"))

sum=0

while(n>0):

a=n%10

sum=sum*10+a

n=n//10

print(sum)

Armstrong number or not output

enter a number153

The given number is Armstrong number

n=eval(input("enter a number"))

org=n

sum=0

while(n>0):

a=n%10

sum=sum+a*a*a

n=n//10

if(sum==org):

print("The given number is Armstrong

number")

else:

print("The given number is not

Armstrong number")

Palindrome or not output

enter a number121

The given no is palindrome

68

n=eval(input("enter a number"))

org=n

sum=0

while(n>0):

a=n%10

sum=sum*10+a

n=n//10

if(sum==org):

print("The given no is palindrome")

else:

print("The given no is not palindrome")

For loop:

for in range:

We can generate a sequence of numbers using range() function. range(10) will
generate numbers from 0 to 9 (10 numbers).

In range function have to define the start, stop and step size

as range(start,stop,step size). step size defaults to 1 if not provided.

syntax

Flowchart:

For in sequence

 The for loop in Python is used to iterate over a sequence (list, tuple, string). Iterating over a
sequence is called traversal. Loop continues until we reach the last element in the sequence.

 The body of for loop is separated from the rest of the code using indentation.

Sequence can be a list, strings or tuples

s.no sequences example output

1.

For loop in string

for i in "Ramu":

print(i)

R

A

M

U

69

check the no is prime or not output

n=eval(input("enter a number")) enter a no:7

for i in range(2,n):

if(n%i==0):

print("The num is not a prime")

break

else:

print("The num is a prime number.")

The num is a prime number.

2.

For loop in list

for i in [2,3,5,6,9]:

print(i)

2

3

5

6

9

3.

For loop in tuple

for i in (2,3,1):

print(i)

2

3

1

Examples:

1. Program to print Fibonacci series.

2. check the no is prime or not

Fibonacci series output

Enter the number of terms: 6

Fibonacci Series:

0 1

1

2

3

5

8

70

a=0

b=1

n=eval(input("Enter the number of terms: "))

print("Fibonacci Series: ")

print(a,b)

for i in range(1,n,1):

c=a+b

print(c)

a=b

 b=c

3.Loop Control Structures

71

BREAK








Break statements can alter the flow of a loop.

It terminates the current

loop and executes the remaining statement outside the loop.

If the loop has else statement, that will also gets terminated and come out of the loop completely.

Syntax:

break

Flowchart

example Output

for i in "welcome":

if(i=="c"):

break

print(i)

w

e

l

CONTINUE

It terminates the current iteration and transfer the control to the next iteration in the loop.

Syntax: Continue

Flowchart

Example: Output

w

e

l

for i in "welcome":

if(i=="c"):

continue

print(i) o

m

e

PASS

72





It is used when a statement is required syntactically but you don‟t want any code to execute.

It is a null statement, nothing happens when it is executed.

Syntax:

pass

break

73

Example Output

for i in “welcome”:

if (i == “c”):

pass

print(i)

w

e

l

c

o

m

e

Difference between break and continue

break continue

It terminates the current loop and

executes the remaining statement outside

the loop.

It terminates the current iteration and

transfer the control to the next iteration in

the loop.

syntax:

break

syntax:

continue

for i in "welcome":

if(i=="c"):

break

print(i)

for i in "welcome":

if(i=="c"):

continue

print(i)

w

e

l

w

e

l

o

m

e

else statement in loops:

else in for loop:





If else statement is used in for loop, the else statement is executed when the loop has reached the
limit.
The statements inside for loop and statements inside else will also execute.

example output

for i in range(1,6): 1

print(i) 2

else: 3

print("the number greater than 6") 4

5 the number greater than 6

else in while loop:

If else statement is used within while loop , the else part will be executed when the condition become
false.
The statements inside for loop and statements inside else will also execute.

Program output

i=1 1

while(i<=5): 2

print(i) 3

i=i+1 4

else: 5

print("the number greater than 5") the number greater than 5

4) Fruitful Function

 Fruitful function

 Void function

 Return values

 Parameters

 Local and global scope

 Function composition

 Recursion

A function that returns a value is called fruitful function.

Example:

Root=sqrt (25)

Example:

def add():

a=10

b=20

c=a+b

return c

c=add()

print(c)

74

Void Function

A function that perform action but don‟t return any value.

Example:

print(“Hello”)

Example:

def add():

a=10

b=20

c=a+b

print(c)

add()

Return values:

return keywords are used to return the values from the function.

example:

return a – return 1 variable

return a,b– return 2 variables

return a+b– return expression

return 8– return value

PARAMETERS / ARGUMENTS(refer 2nd unit)

Local and Global Scope

Global Scope







The scope of a variable refers to the places that you can see or access a variable.

A variable with global scope can be used anywhere in the program.

It can be created by defining a variable outside the function.

Example output

a=50

def add():

b=20

c=a+b

print©

def sub():

b=30

c=a-b

print©

print(a)

Global Variable

Local Variable

70

20

50

75

Local Scope A variable with local scope can be used only within the function .

Example output

def add():

b=20

c=a+b

print©

def sub():

b=30

c=a-b

print©

print(a)

print(b)

Local Variable

Local Variable

70

20

error

error

Function Composition:

Function Composition is the ability to call one function from within another function

It is a way of combining functions such that the result of each function is passed as the argument of
the next function.

In other words the output of one function is given as the input of another function is known as
function composition.

find sum and average using function output

composition

def sum(a,b):

sum=a+b

return sum

def avg(sum):

avg=sum/2

return avg

a=eval(input("enter a:"))

b=eval(input("enter b:"))

sum=sum(a,b)

avg=avg(sum)

print("the avg is",avg)

enter a:4

enter b:8

the avg is 6.0

Recursion

A function calling itself till it reaches the base value - stop point of function call. Example:

factorial of a given number using recursion

76

Factorial of n Output

def fact(n):

if(n==1):

return 1

else:

return n*fact(n-1)

n=eval(input("enter no. to find

fact:"))

fact=fact(n)

print("Fact is",fact)

enter no. to find fact:5

Fact is 120

77

Explanation

Examples:

1. sum of n numbers using recursion

2. exponential of a number using recursion

Sum of n numbers Output

def sum(n):

if(n==1):

return 1

else:

return n*sum(n-1)

n=eval(input("enter no. to find sum: "))

sum=sum(n)

print("Fact is",sum)

enter no. to find sum:10

Fact is 55

5)Explain about Strings and its operation:

String is defined as sequence of characters represented in quotation marks

(either single quotes („) or double quotes (“).
An individual character in a string is accessed using a index.

The index should always be an integer (positive or negative).

A index starts from 0 to n-1.

Strings are immutable i.e. the contents of the string cannot be changed after it is created.
Python will get the input at run time by default as a string.

Python does not support character data type. A string of size 1 can be treated as characters.

1. single quotes (' ')

2. double quotes (" ")

3. triple quotes(“”” “”””)

Operations on string:

1. Indexing

2. Slicing

3. Concatenation

4. Repetitions

5. Member ship

>>>a=”HELLO” Positive indexing helps in accessing

the string from the beginning

Negative subscript helps in accessing

the string from the end.

indexing >>>print(a[0])

>>>H

>>>print(a[-1])

>>>O

Print[0:4] – HELL The Slice[start : stop] operator extracts

Slicing: Print[:3] – HEL

Print[0:]- HELLO

sub string from the strings.

A segment of a string is called a slice.

Concatenation

a=”save”

b=”earth”

>>>print(a+b)

Save earth

The + operator joins the text on both

sides of the operator.

Repetitions:

a=”panimalar ”

>>>print(3*a)

The * operator repeats the string on the

left hand side times the value on right

78

panimalarpanimalar

panimalar

hand side.

Membership:

>>> s="good morning"

>>>"m" in s

True

>>> "a" not in s

True

Using membership operators to check a

particular character is in string or not.

Returns true if present

String slices:

 A part of a string is called string slices.

 The process of extracting a sub string from a string is called slicing.

Slicing:

a=”HELLO”

Print[0:4] – HELL

Print[:3] – HEL

Print[0:]- HELLO

The Slice[n : m] operator extracts sub

string from the strings.

A segment of a string is called a slice.

Immutability:

Python strings are “immutable” as they cannot be changed after they are created.

Therefore [] operator cannot be used on the left side of an assignment.

operations Example output

element assignment a="PYTHON"

a[0]='x'

TypeError: 'str' object does

not support element

assignment

element deletion a=”PYTHON”

del a[0]

TypeError: 'str' object

doesn't support element

deletion

delete a string a=”PYTHON”

del a

print(a)

NameError: name 'my_string'

is not defined

79

80

string built in functions and methods:

A method is a function that “belongs to” an object.

Syntax to access the method

Stringname.method()

a=”happy birthday”

here, a is the string name.

syntax example description

1 a.capitalize() >>> a.capitalize()

' Happy birthday‟

capitalize only the first letter

in a string

2 a.upper() >>> a.upper()

'HAPPY BIRTHDAY‟

change string to upper case

3 a.lower() >>> a.lower()

' happy birthday‟

change string to lower case

4 a.title() >>> a.title()

' Happy Birthday '

change string to title case i.e.

first characters of all the

words are capitalized.

5 a.swapcase() >>> a.swapcase()

'HAPPY BIRTHDAY'

change lowercase characters

to uppercase and vice versa

6 a.split() >>> a.split()

['happy', 'birthday']

returns a list of words

separated by space

7 a.center(width,”fillchar

”)

>>>a.center(19,”*”)

'***happy birthday***'

pads the string with the

specified “fillchar” till the

length is equal to “width”

8 a.count(substring) >>> a.count('happy')

1

returns the number of

occurences of substring

9 a.replace(old,new) >>>a.replace('happy',

'wishyou happy')

'wishyou happy

birthday'

replace all old substrings

with new substrings

10 a.join(b) >>> b="happy"

>>> a="-"

>>> a.join(b)

'h-a-p-p-y'

returns a string concatenated

with the elements of an

iterable. (Here “a” is the

iterable)

11 a.isupper() >>> a.isupper()

False

checks whether all the case-

based characters (letters) of

the string are uppercase.

12 a.islower() >>> a.islower()

True

checks whether all the case-

based characters (letters) of

the string are lowercase.

13 a.isalpha() >>> a.isalpha()

False

checks whether the string

consists of alphabetic

characters only.

String modules:












A module is a file containing Python definitions, functions, statements.

Standard library of Python is extended as modules.

To use these modules in a program, programmer needs to import the module.

Once we import a module, we can reference or use to any of its functions or variables in our code.
There is large number of standard modules also available in python.

Standard modules can be imported the same way as we import our user-defined modules.

Syntax:

import module_name

Example output

import string

print(string.punctuation) !"#$%&'()*+,-./:;<=>?@[\]^_`{|}~

print(string.digits) 0123456789

print(string.printable) 0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJ

print(string.capwords("happ KLMNOPQRSTUVWXYZ!"#$%&'()*+,-

y birthday")) ./:;<=>?@[\]^_`{|}~

print(string.hexdigits) Happy Birthday

print(string.octdigits) 0123456789abcdefABCDEF

01234567

Escape sequences in string

Escape

Sequence

Description example

\n new line >>> print("hai \nhello")

hai

hello

\\ prints Backslash (\) >>> print("hai\\hello")

hai\hello

\' prints Single quote (') >>> print("'")

'

\" prints Double quote

(")

>>>print("\"")

"

\t prints tab sapace >>>print(“hai\thello”)

hai hello

\a ASCII Bell (BEL) >>>print(“\a”)

81

6) Array:

Array is a collection of similar elements. Elements in the array can be accessed by index. Index
starts with 0. Array can be handled in python by module named array.

To create array have to import array module in the program.

Syntax :

import array

Syntax to create array:

Array_name = module_name.function_name(‘datatype’,[elements])

example:

a=array.array(‘i’,[1,2,3,4])

a- array name

array- module name

i- integer datatype

Example

Program to find sum of Output

array elements

import array

sum=0

a=array.array('i',[1,2,3,4])

for i in a:

sum=sum+i

print(sum)

10

Convert list into array:

fromlist() function is used to append list to array. Here the list is act like a array.

Syntax:

arrayname.fromlist(list_name)

Example

program to convert list Output

into array

35 import array

sum=0

l=[6,7,8,9,5]

a=array.array('i',[])

a.fromlist(l)

for i in a:

sum=sum+i

print(sum)

82

83

Methods of an array

a=[2,3,4,5]

Syntax example Description

1 array(data type,

value list)

array(„i‟,[2,3,4,5]) This function is used to create

an array with data type and

value list specified in its

arguments.

2 append() >>>a.append(6)

[2,3,4,5,6]

This method is used to add the

at the end of the array.

3 insert(index,element

)

>>>a.insert(2,10)

[2,3,10,5,6]

This method is used to add the

value at the position specified in

its argument.

4 pop(index) >>>a.pop(1)

[2,10,5,6]

This function removes the

element at the position

mentioned in its argument, and

returns it.

5 index(element) >>>a.index(2)

0

This function returns the index

of value

6 reverse() >>>a.reverse()

[6,5,10,2]

This function reverses the

array.

7 count() a.count() This is used to count number of

7.ILLUSTRATIVE PROGRAMS:

Square root using newtons method: Output:

def newtonsqrt(n):

root=n/2

for i in range(10):

root=(root+n/root)/2

print(root)

n=eval(input("enter number to find Sqrt: "))

newtonsqrt(n)

enter number to find Sqrt: 9

3.0

GCD of two numbers output

n1=int(input("Enter a number1:"))

n2=int(input("Enter a number2:"))

for i in range(1,n1+1):

if(n1%i==0 and n2%i==0):

gcd=i

print(gcd)

Enter a number1:8

Enter a number2:24

8

Exponent of number Output:

def power(base,exp):

if(exp==1):

return(base)

else:

return(base*power(base,exp-1))

base=int(input("Enter base: "))

exp=int(input("Enter exponential value:"))

result=power(base,exp)

print("Result:",result)

Enter base: 2

Enter exponential value:3

Result: 8

sum of array elements: output:

a=[2,3,4,5,6,7,8]

sum=0

for i in a:

sum=sum+i

print("the sum is",sum)

the sum is 35

Linear search output

a=[20,30,40,50,60,70,89]

print(a)

search=eval(input("enter a element to search:"))

for i in range(0,len(a),1):

if(search==a[i]):

print("element found at",i+1)

break

else:

print("not found")

[20, 30, 40, 50, 60, 70, 89]

enter a element to search:30

element found at 2

84

85

Binary search

output

a=[20, 30, 40, 50, 60, 70, 89] [20, 30, 40, 50, 60, 70, 89]

print(a)

search=eval(input("enter a element to search:"))

enter a element to search:30

element found at 2

start=0

stop=len(a)-1

while(start<=stop):

mid=(start+stop)//2

if(search==a[mid]):

print("element found at",mid+1)

break

elif(search<a[mid]):

stop=mid-1

else:

start=mid+1

else:

print("not found")

Two marks:

1. What is a Boolean value?








Boolean data type have two values. They are 0 and 1.

0 represents False

1 represents True

True and False are keyword.

Example:

>>> 3==5

False

>>> 6==6

True

>>> True+True

2

>>> False+True

1

>>> False*True

0

2. Difference between break and continue.

break continue

It terminates the current loop and

executes the remaining statement outside

the loop.

It terminates the current iteration and

transfer the control to the next iteration in

the loop.

syntax:

break

syntax:

continue

for i in "welcome":

if(i=="c"):

break

print(i)

for i in "welcome":

if(i=="c"):

continue

print(i)

w

e

l

w

e

l

o

m

e

86

3. Write a Python program to accept two numbers, multiply them and print the result.

number1 = int(input("Enter first number: "))

number2 = int(input("Enter second number: "))

mul = number1 * number2
print("Multiplication of given two numbers is: ", mul)

4. Write a Python program to accept two numbers, find the greatest and print the result.

number1 = int(input("Enter first number: "))

number2 = int(input("Enter second number: "))

if(number1>number2):
print('number1 is greater',number1)

else:

print('number2 is greater',number2)

5. Define recursive function.

Recursion is a way of programming or coding a problem, in which a function calls itself one

or more times in its body. Usually, it is returning the return value of this function call. If a function

definition fulfils the condition of recursion, we call this function a recursive function.

Example:

def factorial(n):

if n == 1:
return 1

else:

return n * factorial(n-1)

6. Write a program to find sum of n numbers:

87

n=eval(input("enter n"))

i=1

sum=0

while(i<=n):

sum=sum+i

i=i+1

print(sum)

enter n

10

55





7. What is the purpose of pass statement?

Using a pass statement is an explicit way of telling the interpreter to do nothing.

It is used when a statement is required syntactically but you don‟t want any code to execute.

It is a null statement, nothing happens when it is executed.

88

Syntax:

pass

break

Example Output

for i in “welcome”:

if (i == “c”):

pass

print(i)

w

e

l

c

o

m

e

8. Compare string and string slices.

A string is a sequence of character.

Eg: fruit = „banana‟

String Slices :

A segment of a string is called string slice, selecting a slice is similar to selecting a character.

Eg: >>> s ='Monty Python'

>>> print s[0:5]

Monty

>>> print s[6:12]

Python

9. Explain global and local scope.

The scope of a variable refers to the places that we can see or access a variable. If we define a

variable on the top of the script or module, the variable is called global variable. The variables that are

defined inside a class or function is called local variable.

Eg:

def my_local():

a=10

print(“This is local variable”)

Eg:

a=10

def my_global():

print(“This is global variable”)

10. Mention a few string functions.

s.captilize() – Capitalizes first character of string

s.count(sub) – Count number of occurrences of string

s.lower() – converts a string to lower case

s.split() – returns a list of words in string

