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UNIT IV  
ASYNCHRONOUS SEQUENTIAL LOGIC 

• Analysis of Asynchronous Sequential Circuits 

• Design of Asynchronous Sequential Circuits 

• Reduction of State and Flow Tables 

• Race-free State Assignment 

• Hazards 
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Introduction 

•  A sequential circuit is specified by a time 
sequence of inputs, outputs and internal 
states. The output changes whenever a clock 
pulse is applied. The memory elements are 
clocked flip-flops.  

• Asynchronous sequential circuits do not use 
clock pulses. The memory elements in 
asynchronous sequential circuits are either 
unclocked flip-flops (Latches) or time-delay 
elements.  
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S No 
Synchronous sequential 

circuits 
Asynchronous 

sequential circuits 

1 
Memory elements are clocked 

flip-flops 

Memory elements are 

either unclocked flip-

flops or time delay 

elements. 

2 
The change in input signals can 

affect memory element upon 

activation of clock signal. 

The change in input 

signals can affect memory 

element at any instant of 

time. 

3 

The maximum operating speed 

of clock depends on time delays 

involved. Therefore synchronous 

circuits can operate slower than 

asynchronous. 

Because of the absence of 

clock, it can operate faster 

than synchronous circuits. 

4 Easier to design More difficult to design 
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Block diagram of Asynchronous sequential circuits  



 According to input variables there are two types  

Fundamental mode circuit  

– The input variables change only when the circuit is 
stable. Only one input variable can change at a given 
time.  

– Inputs are levels (0, 1) and not pulses.  

Pulse mode circuit 

– The input variables are pulses (True, False) instead of 
levels.  

– The width of the pulses is long enough for the circuit 
to respond to the input.  

– The pulse width must not be so long that it is still 
present after the new state is reached.  
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Analysis of Asynchronous Sequential Circuits 

 The analysis of asynchronous sequential 
circuits consists of obtaining a table or a 
diagram that describes the sequence of 
internal states and outputs as a function 
of changes in the input variables.  
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Analysis Procedure  
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Example of an asynchronous sequential circuit 



0 1 

00 0 0 

01 1 0 

11 1 1 

10 0 1 
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x 
y1y2 

0 1 

00 0 1 

01 1 1 

11 1 0 

10 0 0 

x 
y1y2 

0 1 

00 00 01 

01 11 01 

11 11 10 

10 00 10 

x 
y1y2 

Transition table 

Transition Table 

Total State 

Four stable total states – y1y2x  = 000, 011, 110, and 101 

Four unstable total states – 001, 010, 111, and 100 
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0 1 

00 00 01 

01 11 01 

11 11 10 

10 00 10 

x 
y1y2 

The transition table of asynchronous sequential circuit is 
similar to the state table used for synchronous circuits 
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 The procedure for obtaining a transition table from the 
given circuit diagram is as follows.  

1. Determine all feedback loops in the circuit.  
2. Designate the output of each feedback loop with 

variable Y1 and its corresponding inputs y1, y2,….yk, 
where k is the number of feedback loops in the circuit.  

3. Derive the Boolean functions of all Y’s as a function of 
the external inputs and the y’s.  

4. Plot each Y function in a map, using y variables for the 
rows and the external inputs for the columns.  

5. Combine all the maps into one table showing the value 
of Y= Y1, Y2,….Yk inside each square.  

6. Circle all stable states where Y=y. The resulting map is 
the transition table.  

 Once the transition table is available, the behavior of the 
circuit can be analyzed by observing the stale transition 
as a function of changes in the input variables. 



Flow Table 
• During the design of asynchronous sequential circuits, it is 

more convenient to name the states by letter symbols than 
binary values.  

• Such a table is called an flow table and is similar to a 
transition table, except that the internal states are 
symbolized with letters rather than binary numbers.  

• The flow table also includes the output values of the circuit 
for each stable state. 
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(b) Two states with two 
inputs and one output 



 If a transition table has only one stable state in 
each row then it is called as primitive flow table 

• Figure (a) is called a primitive flow table because 
it has only one stable state in each row. 

• Figure (b ) shows a now table with more than one 
stable state in the same row. 

• The binary value of the output variable is 
indicated inside the square next to the state 
symbol and is separated from the state symbol by 
a comma. 
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• To obtain the circuit described by a flow table, it is 
necessary to assign a distinct binary value to each 
state.  

• Such an assignment converts the flow table into a 
transition table from which we can derive the logic 
diagram. 

• Assign 0 to state a and 1 to state b, the result is the 
transition table 

• The output map is obtained directly from the output 
values in the flow table 

14 



15 



 An asynchronous sequential circuit is 
described by the following excitation and 
output function,  

  Y= x1x2+ (x1+x2) y  

  Z= Y  

 a) Draw the logic diagram of the circuit.  

 b) Derive the transition table, flow table and 
output map.  

 c) Describe the behavior of the circuit.  
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Logic diagram  

Y= x1x2+ (x1+x2) y  
Z= Y  



18 Transition table  Output map  
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Assign a= 0; b= 1  

Flow table  

The circuit gives carry output of the full adder circuit  



Race Conditions 
• A race condition is said to exist in an 

asynchronous sequential circuit when two or 
more binary state variables change value in 
response to a change in an input variable.  

• When unequal delays are encountered, a race 
condition may cause the stale variables to 
change in an unpredictable manner. 

 

• Races are classified as:  

 i. Non-critical races  

 ii. Critical races.  
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Non-critical races 

• If the final stable state that the circuit reaches does 
not depend on the order in which the state variables 
change, the race is called a non-critical race.  

• If a circuit, whose transition table starts with the 
total stable state y1y2x= 000 and then change the 
input from 0 to 1. The state variables must then 
change from 00 to 11, which define a race condition.  

 The possible transitions are:  

 00   11   

 00   01  11   

 00   10  11  

• In all cases, the final state is the same, which results 
in a non-critical condition . 21 
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Examples of Non-critical Races  



Critical races 
• A race becomes critical if the correct next state is not reached 

during a state transition. If it is possible to end up in two or 
more different stable states, depending on the order in which 
the state variables change, then it is a critical race. For proper 
operation, critical races must be avoided.  

• Stable state (y1y2x= 000), and then change the input from 0 to 
1. The state variables must then change from 00 to 11. If they 
change simultaneously, the final total stable state is 111.  

• If, because of unequal propagation delay, Y2 changes to 1 
before Y1 does, then the circuit goes to the total stable state 
011 and remains there.  

• If, however, Y1 changes first, the internal state becomes 10 and 
the circuit will remain in the stable total state 101.  

• Hence, the race is critical because the circuit goes to different 
stable states, depending on the order in which the state 
variables change.  
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Examples of Critical Races  



CYCLES  
• Races can be avoided by directing the circuit 

through intermediate unstable states with a 
unique state-variable change.  

• When a circuit goes through a unique 
sequence of unstable states, it is said to have 
a cycle.  

• Care must be taken when using a cycle that 
terminates with a stable state.  

• If a cycle does not terminate with a stable 
state, the circuit will keep going from one 
unstable state to another, making the entire 
circuit unstable.  
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Examples of cycles 



Debounce Circuit  

• A debounce circuit is a circuit which removes the 
series of pulses that result from a contact bounce 
and produces a single smooth transition of the 
binary signal from 0 to 1 or from 1 to 0.  

• One such circuit consists of a single-pole, double-
throw switch connected to an SR latch.  
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Debounce Circuit  



Circuits With Latches 
SR Latch 
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• The circuit exhibits some difficulty when both 
S and R are equal to 1 (Q = Q’ = 0) 

• From the transition table, we note that going 
from SR = 11 to SR = 00 produces an 
unpredictable result 

• Make sure that 1’s are not applied to both the 
S and R inputs simultaneously.  SR = 0 
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Example of a circuit with SR Latches 



• The Boolean functions for the S and R inputs in 
each latch are  

  S1 = x1y2   S2 = x1x2  
  R1 = x1’x2’   R2 = x2’y1  
• Check whether the conditions SR= 0 is satisfied to 

ensure proper operation of the circuit.  
  S1R1 = x1y2 x1’x2’ = 0  
  S2R2 = x1x2 x2’y1  = 0  (x1x1’ = x2x2’ = 0 ) 
• Evaluate Y1 and Y2. The excitation functions are 

derived from the relation Y= S+ R’y.  
  Y1= S1+ R1’y1 = x1y2 +(x1’x2’)’ y1  
   = x1y2 +(x1+ x2) y1 = x1y2 +x1y1+ x2y1  
  Y2= S2+ R2’y2 = x1x2+ (x2’y1)’y2  
   = x1x2+ (x2+ y1’) y2 = x1x2+ x2y2+ y1’y2 
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Transition Table  



 The procedure for analyzing an asynchronous 
sequential circuit with SR latches 

1. Label each latch output with Yi and its external 
feedback path (if any) with yi for  i = 1,2 ,..,, k.  

2. Derive the Boolean functions for the Si and Ri inputs 
in each latch.  

3. Check whether SR = 0 for each NOR latch or whether 
S'R' = 0 for each NAND latch. If either of these 
condition is not satisfied, there is a possibility that the 
circuit may not operate properly.  

4. Evaluate Y = S + R’y  for each NOR latch or Y = S' + Ry 
for each NAND latch.  

5. Construct a map with the y’s representing the rows 
and the x inputs representing the columns.  

6. Plot the value of Y= Y1Y2 ……Yk in the map.  
7. Circle all stable states such that Y = y. The resulting 

map is the transition table.  
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Design of Asynchronous Sequential Circuits 
• The design of an asynchronous sequential circuit starts from 

the statement of the problem and concludes in a logic diagram. 
The design steps must be carried out in order to minimize the 
circuit complexity and to produce a stable circuit without 
critical races.  

The design steps are as follows:  
1. State the design specifications.  
2. Obtain a primitive flow table from the given design 

specifications.  
3. Reduce the flow table by merging rows in the primitive flow 

table.  
4. Assign binary state variables to each row of the reduced flow 

table to obtain the transition table. The procedure of state 
assignment eliminates any possible critical races.  

5. Assign output values to the dashes associated with the 
unstable states to obtain the output maps.  

6. Simplify the Boolean functions of the excitation and output 
variables and draw the logic diagram.  35 



• Design a gated latch circuit with inputs, G (gate) and 
D (data), and one output, Q.  

• Binary information present at the D input is 
transferred to the Q output when G is equal to 1.  

• The Q output will follow the D input as long as G= 1.  

• When G goes to 0, the information that was present 
at the D input at the time of transition occurred is 
retained at the Q output.  

• The gated latch is a memory element that accepts 
the value of D when G= 1 and retains this value after 
G goes to 0, a change in D does not change the value 
of the output Q.  
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• From the design specifications, we know that  

  Q= 0 if DG= 01  

 and Q= 1 if DG= 11  

 because D must be equal to Q when G= 1.  

• When G goes to 0, the output depends on the 
last value of D.  

• Thus, if the transition is from 01 to 00 to 10, then 
Q must remain 0 because D is 0 at the time of the 
transition from 1 to 0 in G. 

• If the transition of DG is from 11 to 10 to 00, then 
Q must remain 1.  

• This information results in six different total 
states, as shown in the table 
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• A primitive flow table is a flow table with only 
one stable total state in each row. It has one row 
for each state and one column for each input 
combination. 

• A total stale consists of the internal state 
combined with the input 
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Inputs 
St

at
e

s 

Primitive Flow Table  

 Fill in one square in each 
row belonging to the 
stable state in that row. 
These entries are 
determined from Table.  

 Next, both inputs are 
nor allowed to change 
simultaneously, enter 
dash marks in each row 
that differs in two or 
more variables from the 
input variables 
associated with the 
stable state. 

 Next, it is necessary to 
find values for two more 
squares in each row. The 
comments listed in Table 
may help in deriving the 
necessary information 
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Reduction of the Primitive Flow Table 
• The primitive flow table has only stable state in each 

row.  
• The table can be reduced to a smaller number of rows 

if two or more stable states are placed in the same row 
of the flow table.  

• The grouping of stable states from separate rows into 
one common row is called merging.  

• Two or more rows in the primitive flow table can be 
merged into one row if there are non conflicting states 
and outputs in each of the columns.  

• Whenever one state symbol and don't -care entries are 
encountered in the same column, the state is listed in 
the merged row.  

• If the state is circled in one of the rows. it is also circled 
in the merged row.  

• The output value is included with each stable state in 
the merged row.  



41 

States that are candidates for merging  

Reduced Table- 1  Reduced Table- 2  



• Assign distinct binary value to each state.  
• This assignment converts the flow table into a 

transition table.  
• A binary state assignment must be made to ensure that 

the circuit will be free of critical races.  
• Assign 0 to state a, and 1 to state b in the reduced state 

table.  

42 

Transition Table and Output map  
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Gated-Latch Logic diagram  



Assigning Outputs to Unstable States 
1. Assign a 0 to an output variable associated 

with an unstable state which is a transient 
state between two stable states that have 
a 0 in the corresponding output variable. 

2. Assign a 1 to an output variable associated 
with an unstable state which is a transient 
state between two stable states that have 
a 1 in the corresponding output variable . 

3. Assign a don’t-care condition to an output 
variable associated with an unstable state 
which is a transient state between two 
stable states that have different values (0 
and 1, or 1 and 0) in the corresponding 
output variable . 
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Reduction of State and Flow Tables 
• The procedure for reducing the number of 

internal states in an asynchronous sequential 
circuit resembles the procedure that is used 
for synchronous circuits. 

• An algorithm for the state reduction of a 
completely specified state table, state-
reduction method that uses an implication 
table.  

• The algorithm and the implication table will 
then be modified to cover the state reduction 
of incompletely specified state tables.  
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Implication Table and Implied State 
• There are occasions when a pair of states do not have the 

same next states, but, nonetheless, go to equivalent next 
states. 

• The present states a and b have the same output for the same 
input.  

• Their next states are c and d for  x = 0 and b and a for x = 1 .  
• If the pair of states (c, d) are equivalent, then the pair of states 

(a , b) will also be equivalent. 
• Then (a, b) imply (c, d) 
• If (a, b) imply (c, d) and (c, d) imply (a , b), then a and b are 

equivalent, and so are c and d.  
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• The checking of each pair of states for possible equivalence 
in a table with a large number of states can be done 
systematically by means of an implication table,  

• It is a chart that consists of squares.  
• One for every possible pair of states, that provide spaces 

for listing any possible implied states.  
• By judicious use of the table, it is possible to determine all 

pairs of equivalent states.  
• On the left side along the vertical are listed all the states 

defined in the state table except the first, and across the 
bottom horizontally are listed all the states except the last.  

• The result is a display of all possible combinations of two 
states, with a square placed in the intersection of a row and 
a column where the two states can be tested for 
equivalence. 

• Two states having different outputs for the same input are 
not equivalent. 
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b  d, e  

c X X 

d X X X 

e X X X  

f c, d   X 
c, e X 
a, b 

X X X 

g X X X d, e  d, e X 

a b c d e f 

Implication table 
(a, b) (d, e) (d, g) (e, g) 



• The equivalent states are 

  (a, b) (d, e) (d, g) (e, g) 

• The last three pairs can be combined into a set of three 
equivalent states (d, e, g) 

• The final partition of the states consists of the 
equivalent states found from the implication table, 
together with all the remaining states in the state table 
that are not equivalent to any other state. 

  (a, b) (c) (d, e, g) (f) 
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Merging of the flow table  

• When the state table for a sequential circuit is 
incompletely specified. 

• This happens when certain combinations of inputs or 
input sequences never occur because of external or 
internal constraints. 

• The next states and outputs as don’t care conditions 

• Incompletely specified states can be combined to 
reduce the number of states in the flow table.  

• Such stares cannot be called equivalent because the 
formal definition of equivalence requires that all 
outputs and next states be specified for all inputs.  

• Instead, two incompletely specified states that can 
be combined are said to be Compatible. 
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• Two states are compatible if, for each possible input, they 
have the same output whenever it is specified and their next 
states are compatible whenever they are specified.  

• All don’t-care conditions marked with dashes have no effect in 
the search for compatible states , as they represent 
unspecified conditions . 

• The process that must be applied in order to find a suitable 
group of compatibles for the purpose of merging a flow tab le 
can be divided into three steps: 

1. Determine all compatible pairs by using the implication table. 

2. Find the maximal compatibles with the use of a merger 
diagram. 

3. Find a minimal collection of compatibles that covers all the 
states and is closed. 

• The minimal collection of compatibles is then used to merge 
the rows of the flow table.  
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Compatible Pairs 
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(a, b) (a, c)  
(a, d) (b,e)  
(b, f) (c, d)  
(e, f) 



Maximal Compatibles 
• The maximal compatible is a group of compatibles that 

contains all the possible combinations of compatible states.  
• The maximal compatible can be obtained from a merger 

diagram. 
• The merger diagram is a graph in which each state is 

represented by a dot placed along the circumference of a 
circle. 

• Lines are drawn between any two corresponding dots that 
form a compatible pair.  

• All possible compatibles can be obtained from geometrical 
patterns in which states are connected to each other. 

• An isolated dot represents a state that is not compatible 
with any other state. 

• A line represents a compatible pair.  
• A triangle constitutes a compatible with three states . 
•  An n-state compatible is represented in the merger 

diagram by an n-sided polygon with all its diagonals 
connected. 54 
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(a, b) (a, c) (a, d) (b,e) (b, f) (c, d) (e, f) 

a 

b 

c 

d 

e 

f 
(a, b) (a, c, d) (b, e, f) 

Maximal Compatible 
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(a, b, e, f)  (b, c, h)  (c, d)  (g)  

Maximal Compatible 



Closed covering condition 

• The condition that must be satisfied for 
merging rows is that the set of chosen 
compatibles must cover all the states and 
must be closed.  

• The set will cover all the states if it includes all 
the states of the original state table.  

• The closure condition is  satisfied if there are 
no implied states or if the implied states are 
included within the set.  

• A closed set of compatibles that covers all the 
states is called a closed covering.  
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• If we remove (a, b), we are left with a set 
of two compatibles:  (a, c, d) (b, e, f) 

• All six states from the flow table are 
included in this set. 

• Thus, the set satisfies the covering 
condition 

• Therefore, the primitive flow table can be 
merged into two rows, one for each of 
the compatibles. 
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(a, b) (a, c, d) (b, e, f) 



• The compatible pairs derived from the implication table are 
 (A, B) (A, D) (A, F) (B, D) (C, E) (C, F) (D, E) (E, F)  
• The maximal compatibles: 
 (A, B, D) (C, E, F) (A, F) (D, E)  
• If we remove (A, F) and (D, E), we are left with a set of two 

compatibles  
 (A, B, D) (C, E, F)  
• All six states from the primitive flow table are included in 

this set  
59 



 Design a negative-edge triggered T flip-
flop.  

 The circuit has two inputs, T (toggle) and 
G (clock), and one output, Q.  

 The output state is complemented if T= 1 
and the clock changes from 1 to 0 
(negative-edge triggering).  

 Otherwise, under any other input 
condition, the output Q remains 
unchanged.  
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Specifications of total states  
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Primitive flow table  Implication table  

(a, f) (b, g) 
(b, h) (c, h) 
(d, e) (d, f) 
(e, f) (g, h)  
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Merger Diagram  

(a, f) (b, g) (b, h) (c, h) 
(d, e) (d, f) (e, f) (g, h)  

The maximal compatibles 
are:  
(a, f) (b, g, h) (c, h) (d, e, f)  
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Reduced Flow table  Final Reduced Flow table  
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Maps for Latch Inputs  
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Race-free State Assignment 

68 

• In synchronous sequential circuit design after reducing 
the flow table ,assign binary variables to each stable 
state.  

• The primary objective in choosing a proper binary state 
assignment is the prevention of critical races 

• Critical races can be avoided by making a binary state 
assignment in such a way that only one variable 
changes at any given time when a state transition 
occurs in the flow tab le.  

• To accomplish this objective, it is necessary that states 
between which transitions occur be given adjacent 
assignments.  

• Two binary values are said to be adjacent if they differ 
in only one variable. 

• For example. 010 and 011 are adjacent because they 
differ only in the third bit . 



Three-Row Flow Table Example 

• The assignment of a single binary variable to a 
flow table with two rows does not impose 
critical race problems. 

• A flow table with three rows requires an 
assignment of two binary variables. 

• Inspection of row a reveals that there is a 
transition from state a to state b in column 01 
and from state a to state c in column 11.  

• This information is transferred into a transition 
diagram. 
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a = 00 b = 01 

c = 11 
Transition diagram 

d = 10 

Transition table 



Four-Row Flow-Table Example 

• A flow table with four rows requires a 
minimum of two state variables.  

• Although a race-free assignment is sometimes 
possible with only two binary state variables, 
in many cases the requirement of extra rows 
to avoid critical races will dictate the use of 
three binary state variables. 
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a b 

c 
Transition diagram 

d 

000 00 01 

11 10 

001 

011 101 

     e 
100 

f 111 

g 010 
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State assignment to modified flow table 



Multiple-Row Method 

• Adding extra rows in the flow table, is referred to 
as the shared-row method. 

• A second method. called the multiple-row 
method, is not as efficient, but is easier to apply.  

• In multiple-row assignment, each state in the 
original flow table is replaced by two or more 
combinations of state variables. 

• There are two binary state variables for each 
stable state, each variable being the logical 
complement of the other.  

• For example, the original slate a is replaced with 
two equivalent states a1=000 and a2 =111. 
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Hazards 

• Hazards are unwanted switching transients 
that may appear at the output of a circuit 
because different paths exhibit different 
propagation delays.  

• Hazards occur in combinational circuits, where 
they may cause a temporary false-output 
value.  

• When this condition occurs in asynchronous 
sequential circuits, it may result in a transition 
to a wrong stable state.  
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Hazards in Combinational Circuits 
• A hazard is a condition where a single variable 

change produces a momentary output change 
when no output change should occur.  

• Types of Hazards:  
  Static hazard  
  Dynamic hazard  
• Static Hazard  
 In digital systems, there are only two possible 

outputs, a ‘0’ or a ‘1’. The hazard may produce a 
wrong ‘0’ or a wrong ‘1’. Based on these 
observations, there are three types,  

  Static- 0 hazard,  
  Static- 1 hazard, 
  Dynamic Hazard   
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• Static- 0 hazard 

 When the output of the circuit is to remain at 
0, and a momentary 1 output is possible 
during the transmission between the two 
inputs, then the hazard is called a static 0-
hazard.  
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• Static- 1 hazard  

 When the output of the circuit is to remain at 
1, and a momentary 0 output is possible 
during the transmission between the two 
inputs, then the hazard is called a static 1-
hazard. 
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Circuit with static-1 hazard  

Circuit with static-0 hazard  
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Maps demonstrating a Hazard and its Removal  

Hazard-free Circuit  



• Dynamic Hazard 

 A transient change occurring three or more 
times at an output terminal of a logic network 
when the output is supposed to change only 
once during a transition between two input 
states differing in the value of one variable.  
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Circuit with Dynamic hazard  



• Essential Hazard 

• An essential hazard is caused by unequal delays 
along two or more paths that originate from the 
same input. An excessive delay through an 
inverter circuit in comparison to the delay 
associated with the feedback path may cause 
such a hazard.  

• Essential hazards can be eliminated by adjusting 
the amount of delays in the affected path. To 
avoid essential hazards, each feedback loop must 
be handled with individual care to ensure that 
the delay in the feedback path is long enough 
compared with delays of other signals that 
originate from the input terminals. 
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Design of Hazard Free Circuits 
 Design a hazard-free circuit to implement the 

following function.  

 F (A, B, C, D) = Σm (1, 3, 6, 7, 13, 15)  
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K-map Implementation and grouping  

F=A’B’D+ A’BC+ ABD  



• Hazard- free realization  
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F=A’B’D+ A’BC+ ABD+ A’CD+ BCD  



 Design a hazard-free circuit to implement the 
following function. 

  F (A, B, C, D) = Σm (0, 2, 6, 7, 8, 10, 12).  
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K-map Implementation and grouping  

F= B’D’+ A’BC+ AC’D’  



• Hazard- free realization  
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F= B’D’+ A’BC+ AC’D’+ A’CD’  



 Design a hazard-free circuit to implement the 
following function.  

 F (A, B, C, D) = Σm (1, 3, 4, 5, 6, 7, 9, 11, 15).  
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K-map Implementation and grouping  
F= CD+ A’B+ B’D  



• Hazard- free realization 
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F= CD+ A’B+ B’D+ A’D  



End of Unit IV 
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