
CS8351 DIGITAL PRINCIPLES AND
SYSTEM DESIGN

UNIT IV
ASYNCHRONOUS SEQUENTIAL LOGIC

Prof G ELANGOVAN
Professor and Head

Department of Electrical and Electronics Engineering
NPR College of Engineering and Technology

Natham, Dindigul Dist. 624 401

gurugovan@yahoo.com

1

UNIT IV
ASYNCHRONOUS SEQUENTIAL LOGIC

• Analysis of Asynchronous Sequential Circuits

• Design of Asynchronous Sequential Circuits

• Reduction of State and Flow Tables

• Race-free State Assignment

• Hazards

2

Introduction

• A sequential circuit is specified by a time
sequence of inputs, outputs and internal
states. The output changes whenever a clock
pulse is applied. The memory elements are
clocked flip-flops.

• Asynchronous sequential circuits do not use
clock pulses. The memory elements in
asynchronous sequential circuits are either
unclocked flip-flops (Latches) or time-delay
elements.

3

S No
Synchronous sequential

circuits
Asynchronous

sequential circuits

1
Memory elements are clocked

flip-flops

Memory elements are

either unclocked flip-

flops or time delay

elements.

2
The change in input signals can

affect memory element upon

activation of clock signal.

The change in input

signals can affect memory

element at any instant of

time.

3

The maximum operating speed

of clock depends on time delays

involved. Therefore synchronous

circuits can operate slower than

asynchronous.

Because of the absence of

clock, it can operate faster

than synchronous circuits.

4 Easier to design More difficult to design

4

5

Block diagram of Asynchronous sequential circuits

 According to input variables there are two types

Fundamental mode circuit

– The input variables change only when the circuit is
stable. Only one input variable can change at a given
time.

– Inputs are levels (0, 1) and not pulses.

Pulse mode circuit

– The input variables are pulses (True, False) instead of
levels.

– The width of the pulses is long enough for the circuit
to respond to the input.

– The pulse width must not be so long that it is still
present after the new state is reached.

6

Analysis of Asynchronous Sequential Circuits

 The analysis of asynchronous sequential
circuits consists of obtaining a table or a
diagram that describes the sequence of
internal states and outputs as a function
of changes in the input variables.

7

Analysis Procedure

8

Example of an asynchronous sequential circuit

0 1

00 0 0

01 1 0

11 1 1

10 0 1

9

x
y1y2

0 1

00 0 1

01 1 1

11 1 0

10 0 0

x
y1y2

0 1

00 00 01

01 11 01

11 11 10

10 00 10

x
y1y2

Transition table

Transition Table

Total State

Four stable total states – y1y2x = 000, 011, 110, and 101

Four unstable total states – 001, 010, 111, and 100

10

0 1

00 00 01

01 11 01

11 11 10

10 00 10

x
y1y2

The transition table of asynchronous sequential circuit is
similar to the state table used for synchronous circuits

11

 The procedure for obtaining a transition table from the
given circuit diagram is as follows.

1. Determine all feedback loops in the circuit.
2. Designate the output of each feedback loop with

variable Y1 and its corresponding inputs y1, y2,….yk,
where k is the number of feedback loops in the circuit.

3. Derive the Boolean functions of all Y’s as a function of
the external inputs and the y’s.

4. Plot each Y function in a map, using y variables for the
rows and the external inputs for the columns.

5. Combine all the maps into one table showing the value
of Y= Y1, Y2,….Yk inside each square.

6. Circle all stable states where Y=y. The resulting map is
the transition table.

 Once the transition table is available, the behavior of the
circuit can be analyzed by observing the stale transition
as a function of changes in the input variables.

Flow Table
• During the design of asynchronous sequential circuits, it is

more convenient to name the states by letter symbols than
binary values.

• Such a table is called an flow table and is similar to a
transition table, except that the internal states are
symbolized with letters rather than binary numbers.

• The flow table also includes the output values of the circuit
for each stable state.

12

(b) Two states with two
inputs and one output

 If a transition table has only one stable state in
each row then it is called as primitive flow table

• Figure (a) is called a primitive flow table because
it has only one stable state in each row.

• Figure (b) shows a now table with more than one
stable state in the same row.

• The binary value of the output variable is
indicated inside the square next to the state
symbol and is separated from the state symbol by
a comma.

13

• To obtain the circuit described by a flow table, it is
necessary to assign a distinct binary value to each
state.

• Such an assignment converts the flow table into a
transition table from which we can derive the logic
diagram.

• Assign 0 to state a and 1 to state b, the result is the
transition table

• The output map is obtained directly from the output
values in the flow table

14

15

 An asynchronous sequential circuit is
described by the following excitation and
output function,

 Y= x1x2+ (x1+x2) y

 Z= Y

 a) Draw the logic diagram of the circuit.

 b) Derive the transition table, flow table and
output map.

 c) Describe the behavior of the circuit.

16

17

Logic diagram

Y= x1x2+ (x1+x2) y
Z= Y

18 Transition table Output map

19

Assign a= 0; b= 1

Flow table

The circuit gives carry output of the full adder circuit

Race Conditions
• A race condition is said to exist in an

asynchronous sequential circuit when two or
more binary state variables change value in
response to a change in an input variable.

• When unequal delays are encountered, a race
condition may cause the stale variables to
change in an unpredictable manner.

• Races are classified as:

 i. Non-critical races

 ii. Critical races.

20

Non-critical races

• If the final stable state that the circuit reaches does
not depend on the order in which the state variables
change, the race is called a non-critical race.

• If a circuit, whose transition table starts with the
total stable state y1y2x= 000 and then change the
input from 0 to 1. The state variables must then
change from 00 to 11, which define a race condition.

 The possible transitions are:

 00 11

 00 01 11

 00 10 11

• In all cases, the final state is the same, which results
in a non-critical condition . 21

22

Examples of Non-critical Races

Critical races
• A race becomes critical if the correct next state is not reached

during a state transition. If it is possible to end up in two or
more different stable states, depending on the order in which
the state variables change, then it is a critical race. For proper
operation, critical races must be avoided.

• Stable state (y1y2x= 000), and then change the input from 0 to
1. The state variables must then change from 00 to 11. If they
change simultaneously, the final total stable state is 111.

• If, because of unequal propagation delay, Y2 changes to 1
before Y1 does, then the circuit goes to the total stable state
011 and remains there.

• If, however, Y1 changes first, the internal state becomes 10 and
the circuit will remain in the stable total state 101.

• Hence, the race is critical because the circuit goes to different
stable states, depending on the order in which the state
variables change.

23

24

Examples of Critical Races

CYCLES
• Races can be avoided by directing the circuit

through intermediate unstable states with a
unique state-variable change.

• When a circuit goes through a unique
sequence of unstable states, it is said to have
a cycle.

• Care must be taken when using a cycle that
terminates with a stable state.

• If a cycle does not terminate with a stable
state, the circuit will keep going from one
unstable state to another, making the entire
circuit unstable.

25

26

Examples of cycles

Debounce Circuit

• A debounce circuit is a circuit which removes the
series of pulses that result from a contact bounce
and produces a single smooth transition of the
binary signal from 0 to 1 or from 1 to 0.

• One such circuit consists of a single-pole, double-
throw switch connected to an SR latch.

27

Debounce Circuit

Circuits With Latches
SR Latch

28

• The circuit exhibits some difficulty when both
S and R are equal to 1 (Q = Q’ = 0)

• From the transition table, we note that going
from SR = 11 to SR = 00 produces an
unpredictable result

• Make sure that 1’s are not applied to both the
S and R inputs simultaneously. SR = 0

29

30

Example of a circuit with SR Latches

• The Boolean functions for the S and R inputs in
each latch are

 S1 = x1y2 S2 = x1x2
 R1 = x1’x2’ R2 = x2’y1
• Check whether the conditions SR= 0 is satisfied to

ensure proper operation of the circuit.
 S1R1 = x1y2 x1’x2’ = 0
 S2R2 = x1x2 x2’y1 = 0 (x1x1’ = x2x2’ = 0)
• Evaluate Y1 and Y2. The excitation functions are

derived from the relation Y= S+ R’y.
 Y1= S1+ R1’y1 = x1y2 +(x1’x2’)’ y1
 = x1y2 +(x1+ x2) y1 = x1y2 +x1y1+ x2y1
 Y2= S2+ R2’y2 = x1x2+ (x2’y1)’y2
 = x1x2+ (x2+ y1’) y2 = x1x2+ x2y2+ y1’y2

31

y1 y2 x1 x2 x1y2 x1y1 x2y1 x1x2 x2y2 y1’y2 Y1 Y2
0
0
0
0

0
0
0
0

0
0
1
1

0
1
0
1

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
1

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
1

0
0
0
0

1
1
1
1

0
0
1
1

0
1
0
1

0
0
1
1

0
0
0
0

0
0
0
0

0
0
0
1

0
1
0
1

1
1
1
1

0
0
1
1

1
1
1
1

1
1
1
1

0
0
0
0

0
0
1
1

0
1
0
1

0
0
0
0

0
0
1
1

0
1
0
1

0
0
0
1

0
0
0
0

0
0
0
0

0
1
1
1

0
0
0
1

1
1
1
1

1
1
1
1

0
0
1
1

0
1
0
1

0
0
1
1

0
0
1
1

0
1
0
1

0
0
0
1

0
1
0
1

0
0
0
0

0
1
1
1

0
1
0
1

32

33

Transition Table

 The procedure for analyzing an asynchronous
sequential circuit with SR latches

1. Label each latch output with Yi and its external
feedback path (if any) with yi for i = 1,2 ,..,, k.

2. Derive the Boolean functions for the Si and Ri inputs
in each latch.

3. Check whether SR = 0 for each NOR latch or whether
S'R' = 0 for each NAND latch. If either of these
condition is not satisfied, there is a possibility that the
circuit may not operate properly.

4. Evaluate Y = S + R’y for each NOR latch or Y = S' + Ry
for each NAND latch.

5. Construct a map with the y’s representing the rows
and the x inputs representing the columns.

6. Plot the value of Y= Y1Y2 ……Yk in the map.
7. Circle all stable states such that Y = y. The resulting

map is the transition table.
 34

Design of Asynchronous Sequential Circuits
• The design of an asynchronous sequential circuit starts from

the statement of the problem and concludes in a logic diagram.
The design steps must be carried out in order to minimize the
circuit complexity and to produce a stable circuit without
critical races.

The design steps are as follows:
1. State the design specifications.
2. Obtain a primitive flow table from the given design

specifications.
3. Reduce the flow table by merging rows in the primitive flow

table.
4. Assign binary state variables to each row of the reduced flow

table to obtain the transition table. The procedure of state
assignment eliminates any possible critical races.

5. Assign output values to the dashes associated with the
unstable states to obtain the output maps.

6. Simplify the Boolean functions of the excitation and output
variables and draw the logic diagram. 35

• Design a gated latch circuit with inputs, G (gate) and
D (data), and one output, Q.

• Binary information present at the D input is
transferred to the Q output when G is equal to 1.

• The Q output will follow the D input as long as G= 1.

• When G goes to 0, the information that was present
at the D input at the time of transition occurred is
retained at the Q output.

• The gated latch is a memory element that accepts
the value of D when G= 1 and retains this value after
G goes to 0, a change in D does not change the value
of the output Q.

 36

• From the design specifications, we know that

 Q= 0 if DG= 01

 and Q= 1 if DG= 11

 because D must be equal to Q when G= 1.

• When G goes to 0, the output depends on the
last value of D.

• Thus, if the transition is from 01 to 00 to 10, then
Q must remain 0 because D is 0 at the time of the
transition from 1 to 0 in G.

• If the transition of DG is from 11 to 10 to 00, then
Q must remain 1.

• This information results in six different total
states, as shown in the table

37

• A primitive flow table is a flow table with only
one stable total state in each row. It has one row
for each state and one column for each input
combination.

• A total stale consists of the internal state
combined with the input

38

39

Inputs
St

at
e

s

Primitive Flow Table

 Fill in one square in each
row belonging to the
stable state in that row.
These entries are
determined from Table.

 Next, both inputs are
nor allowed to change
simultaneously, enter
dash marks in each row
that differs in two or
more variables from the
input variables
associated with the
stable state.

 Next, it is necessary to
find values for two more
squares in each row. The
comments listed in Table
may help in deriving the
necessary information

40

Reduction of the Primitive Flow Table
• The primitive flow table has only stable state in each

row.
• The table can be reduced to a smaller number of rows

if two or more stable states are placed in the same row
of the flow table.

• The grouping of stable states from separate rows into
one common row is called merging.

• Two or more rows in the primitive flow table can be
merged into one row if there are non conflicting states
and outputs in each of the columns.

• Whenever one state symbol and don't -care entries are
encountered in the same column, the state is listed in
the merged row.

• If the state is circled in one of the rows. it is also circled
in the merged row.

• The output value is included with each stable state in
the merged row.

41

States that are candidates for merging

Reduced Table- 1 Reduced Table- 2

• Assign distinct binary value to each state.
• This assignment converts the flow table into a

transition table.
• A binary state assignment must be made to ensure that

the circuit will be free of critical races.
• Assign 0 to state a, and 1 to state b in the reduced state

table.

42

Transition Table and Output map

43

Gated-Latch Logic diagram

Assigning Outputs to Unstable States
1. Assign a 0 to an output variable associated

with an unstable state which is a transient
state between two stable states that have
a 0 in the corresponding output variable.

2. Assign a 1 to an output variable associated
with an unstable state which is a transient
state between two stable states that have
a 1 in the corresponding output variable .

3. Assign a don’t-care condition to an output
variable associated with an unstable state
which is a transient state between two
stable states that have different values (0
and 1, or 1 and 0) in the corresponding
output variable .

44

Reduction of State and Flow Tables
• The procedure for reducing the number of

internal states in an asynchronous sequential
circuit resembles the procedure that is used
for synchronous circuits.

• An algorithm for the state reduction of a
completely specified state table, state-
reduction method that uses an implication
table.

• The algorithm and the implication table will
then be modified to cover the state reduction
of incompletely specified state tables.

45

Implication Table and Implied State
• There are occasions when a pair of states do not have the

same next states, but, nonetheless, go to equivalent next
states.

• The present states a and b have the same output for the same
input.

• Their next states are c and d for x = 0 and b and a for x = 1 .
• If the pair of states (c, d) are equivalent, then the pair of states

(a , b) will also be equivalent.
• Then (a, b) imply (c, d)
• If (a, b) imply (c, d) and (c, d) imply (a , b), then a and b are

equivalent, and so are c and d.

46

• The checking of each pair of states for possible equivalence
in a table with a large number of states can be done
systematically by means of an implication table,

• It is a chart that consists of squares.
• One for every possible pair of states, that provide spaces

for listing any possible implied states.
• By judicious use of the table, it is possible to determine all

pairs of equivalent states.
• On the left side along the vertical are listed all the states

defined in the state table except the first, and across the
bottom horizontally are listed all the states except the last.

• The result is a display of all possible combinations of two
states, with a square placed in the intersection of a row and
a column where the two states can be tested for
equivalence.

• Two states having different outputs for the same input are
not equivalent.

47

48

49

b d, e

c X X

d X X X

e X X X

f c, d X
c, e X
a, b

X X X

g X X X d, e d, e X

a b c d e f

Implication table
(a, b) (d, e) (d, g) (e, g)

• The equivalent states are

 (a, b) (d, e) (d, g) (e, g)

• The last three pairs can be combined into a set of three
equivalent states (d, e, g)

• The final partition of the states consists of the
equivalent states found from the implication table,
together with all the remaining states in the state table
that are not equivalent to any other state.

 (a, b) (c) (d, e, g) (f)

50

Merging of the flow table

• When the state table for a sequential circuit is
incompletely specified.

• This happens when certain combinations of inputs or
input sequences never occur because of external or
internal constraints.

• The next states and outputs as don’t care conditions

• Incompletely specified states can be combined to
reduce the number of states in the flow table.

• Such stares cannot be called equivalent because the
formal definition of equivalence requires that all
outputs and next states be specified for all inputs.

• Instead, two incompletely specified states that can
be combined are said to be Compatible.

51

• Two states are compatible if, for each possible input, they
have the same output whenever it is specified and their next
states are compatible whenever they are specified.

• All don’t-care conditions marked with dashes have no effect in
the search for compatible states , as they represent
unspecified conditions .

• The process that must be applied in order to find a suitable
group of compatibles for the purpose of merging a flow tab le
can be divided into three steps:

1. Determine all compatible pairs by using the implication table.

2. Find the maximal compatibles with the use of a merger
diagram.

3. Find a minimal collection of compatibles that covers all the
states and is closed.

• The minimal collection of compatibles is then used to merge
the rows of the flow table.

52

Compatible Pairs

53

(a, b) (a, c)
(a, d) (b,e)
(b, f) (c, d)
(e, f)

Maximal Compatibles
• The maximal compatible is a group of compatibles that

contains all the possible combinations of compatible states.
• The maximal compatible can be obtained from a merger

diagram.
• The merger diagram is a graph in which each state is

represented by a dot placed along the circumference of a
circle.

• Lines are drawn between any two corresponding dots that
form a compatible pair.

• All possible compatibles can be obtained from geometrical
patterns in which states are connected to each other.

• An isolated dot represents a state that is not compatible
with any other state.

• A line represents a compatible pair.
• A triangle constitutes a compatible with three states .
• An n-state compatible is represented in the merger

diagram by an n-sided polygon with all its diagonals
connected. 54

55

(a, b) (a, c) (a, d) (b,e) (b, f) (c, d) (e, f)

a

b

c

d

e

f
(a, b) (a, c, d) (b, e, f)

Maximal Compatible

56

(a, b, e, f) (b, c, h) (c, d) (g)

Maximal Compatible

Closed covering condition

• The condition that must be satisfied for
merging rows is that the set of chosen
compatibles must cover all the states and
must be closed.

• The set will cover all the states if it includes all
the states of the original state table.

• The closure condition is satisfied if there are
no implied states or if the implied states are
included within the set.

• A closed set of compatibles that covers all the
states is called a closed covering.

57

• If we remove (a, b), we are left with a set
of two compatibles: (a, c, d) (b, e, f)

• All six states from the flow table are
included in this set.

• Thus, the set satisfies the covering
condition

• Therefore, the primitive flow table can be
merged into two rows, one for each of
the compatibles.

58

(a, b) (a, c, d) (b, e, f)

• The compatible pairs derived from the implication table are
 (A, B) (A, D) (A, F) (B, D) (C, E) (C, F) (D, E) (E, F)
• The maximal compatibles:
 (A, B, D) (C, E, F) (A, F) (D, E)
• If we remove (A, F) and (D, E), we are left with a set of two

compatibles
 (A, B, D) (C, E, F)
• All six states from the primitive flow table are included in

this set
59

 Design a negative-edge triggered T flip-
flop.

 The circuit has two inputs, T (toggle) and
G (clock), and one output, Q.

 The output state is complemented if T= 1
and the clock changes from 1 to 0
(negative-edge triggering).

 Otherwise, under any other input
condition, the output Q remains
unchanged.

60

61

Specifications of total states

62

Primitive flow table Implication table

(a, f) (b, g)
(b, h) (c, h)
(d, e) (d, f)
(e, f) (g, h)

63

Merger Diagram

(a, f) (b, g) (b, h) (c, h)
(d, e) (d, f) (e, f) (g, h)

The maximal compatibles
are:
(a, f) (b, g, h) (c, h) (d, e, f)

64

Reduced Flow table Final Reduced Flow table

65

66

Maps for Latch Inputs

67

Race-free State Assignment

68

• In synchronous sequential circuit design after reducing
the flow table ,assign binary variables to each stable
state.

• The primary objective in choosing a proper binary state
assignment is the prevention of critical races

• Critical races can be avoided by making a binary state
assignment in such a way that only one variable
changes at any given time when a state transition
occurs in the flow tab le.

• To accomplish this objective, it is necessary that states
between which transitions occur be given adjacent
assignments.

• Two binary values are said to be adjacent if they differ
in only one variable.

• For example. 010 and 011 are adjacent because they
differ only in the third bit .

Three-Row Flow Table Example

• The assignment of a single binary variable to a
flow table with two rows does not impose
critical race problems.

• A flow table with three rows requires an
assignment of two binary variables.

• Inspection of row a reveals that there is a
transition from state a to state b in column 01
and from state a to state c in column 11.

• This information is transferred into a transition
diagram.

69

70

a = 00 b = 01

c = 11
Transition diagram

d = 10

Transition table

Four-Row Flow-Table Example

• A flow table with four rows requires a
minimum of two state variables.

• Although a race-free assignment is sometimes
possible with only two binary state variables,
in many cases the requirement of extra rows
to avoid critical races will dictate the use of
three binary state variables.

71

72

a b

c
Transition diagram

d

000 00 01

11 10

001

011 101

 e
100

f 111

g 010

73

State assignment to modified flow table

Multiple-Row Method

• Adding extra rows in the flow table, is referred to
as the shared-row method.

• A second method. called the multiple-row
method, is not as efficient, but is easier to apply.

• In multiple-row assignment, each state in the
original flow table is replaced by two or more
combinations of state variables.

• There are two binary state variables for each
stable state, each variable being the logical
complement of the other.

• For example, the original slate a is replaced with
two equivalent states a1=000 and a2 =111.

74

75

Hazards

• Hazards are unwanted switching transients
that may appear at the output of a circuit
because different paths exhibit different
propagation delays.

• Hazards occur in combinational circuits, where
they may cause a temporary false-output
value.

• When this condition occurs in asynchronous
sequential circuits, it may result in a transition
to a wrong stable state.

76

Hazards in Combinational Circuits
• A hazard is a condition where a single variable

change produces a momentary output change
when no output change should occur.

• Types of Hazards:
 Static hazard
 Dynamic hazard
• Static Hazard
 In digital systems, there are only two possible

outputs, a ‘0’ or a ‘1’. The hazard may produce a
wrong ‘0’ or a wrong ‘1’. Based on these
observations, there are three types,

 Static- 0 hazard,
 Static- 1 hazard,
 Dynamic Hazard

77

• Static- 0 hazard

 When the output of the circuit is to remain at
0, and a momentary 1 output is possible
during the transmission between the two
inputs, then the hazard is called a static 0-
hazard.

78

• Static- 1 hazard

 When the output of the circuit is to remain at
1, and a momentary 0 output is possible
during the transmission between the two
inputs, then the hazard is called a static 1-
hazard.

79

80

Circuit with static-1 hazard

Circuit with static-0 hazard

81

Maps demonstrating a Hazard and its Removal

Hazard-free Circuit

• Dynamic Hazard

 A transient change occurring three or more
times at an output terminal of a logic network
when the output is supposed to change only
once during a transition between two input
states differing in the value of one variable.

82

83

Circuit with Dynamic hazard

• Essential Hazard

• An essential hazard is caused by unequal delays
along two or more paths that originate from the
same input. An excessive delay through an
inverter circuit in comparison to the delay
associated with the feedback path may cause
such a hazard.

• Essential hazards can be eliminated by adjusting
the amount of delays in the affected path. To
avoid essential hazards, each feedback loop must
be handled with individual care to ensure that
the delay in the feedback path is long enough
compared with delays of other signals that
originate from the input terminals.

84

Design of Hazard Free Circuits
 Design a hazard-free circuit to implement the

following function.

 F (A, B, C, D) = Σm (1, 3, 6, 7, 13, 15)

85

K-map Implementation and grouping

F=A’B’D+ A’BC+ ABD

• Hazard- free realization

86

F=A’B’D+ A’BC+ ABD+ A’CD+ BCD

 Design a hazard-free circuit to implement the
following function.

 F (A, B, C, D) = Σm (0, 2, 6, 7, 8, 10, 12).

87

K-map Implementation and grouping

F= B’D’+ A’BC+ AC’D’

• Hazard- free realization

88

F= B’D’+ A’BC+ AC’D’+ A’CD’

 Design a hazard-free circuit to implement the
following function.

 F (A, B, C, D) = Σm (1, 3, 4, 5, 6, 7, 9, 11, 15).

89

K-map Implementation and grouping
F= CD+ A’B+ B’D

• Hazard- free realization

90

F= CD+ A’B+ B’D+ A’D

End of Unit IV

91

