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A classic example for this is given below .

Suppose we are in the process of charging up a capacitor as shown in fig 5.3. 

Fig 5.3

Let us apply the Ampere's Law for the Amperian loop shown in fig 5.3. Ienc = I is the total 

current passing through the loop. But if we draw a baloon shaped surface as in fig 5.3, no 

current passes through this surface and hence Ienc = 0. But for non steady currents such as 

this one, the concept of current enclosed by a loop is ill-defined since it depends on what 
surface you use. In fact Ampere's Law should also hold true for time varying case as well, 
then comes the idea of displacement current which will be introduced in the next few slides.

We can write for time varying case, 

                                                                                                      (5.23) 

                        (5.24) 

The equation (5.24) is valid for static as well as for time varying case.

Equation (5.24) indicates that a time varying electric field will give rise to a magnetic field 

even in the absence of . The term has a dimension of current densities and is 
called the displacement current density.

Introduction of in equation is one of the major contributions of Jame's Clerk 
Maxwell. The modified set of equations 
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                             (5.25a)

                         (5.25b) 

                                  (5.25c) 

                                 (5.25d)

is known as the Maxwell's equation and this set of equations apply in the time varying 

scenario, static fields are being a particular case .

In the integral form 

                                              (5.26a)

              (5.26b)

                                 (5.26c) 

                             (5.26d) 

The modification of Ampere's law by Maxwell has led to the development of a unified 
electromagnetic field theory. By introducing the displacement current term, Maxwell could 
predict the propagation of EM waves. Existence of EM waves was later demonstrated by 
Hertz experimentally which led to the new era of radio communication.

Boundary Conditions for Electromagnetic fields 

The differential forms of Maxwell's equations are used to solve for the field vectors provided 
the field quantities are single valued, bounded and continuous. At the media boundaries, the 
field vectors are discontinuous and their behaviors across the boundaries are governed by 
boundary conditions. The integral equations(eqn 5.26) are assumed to hold for regions 
containing discontinuous media.Boundary conditions can be derived by applying the 
Maxwell's equations in the integral form to small regions at the interface of the two media. 
The procedure is similar to those used for obtaining boundary conditions for static electric 
fields (chapter 2) and static magnetic fields (chapter 4). The boundary conditions are 
summarized as follows 
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With reference to fig 5.3 

Fig 5.4

Equation 5.27 (a) says that tangential component of electric field is continuous across the 
interface while from 5.27 (c) we note that tangential component of the magnetic field is 
discontinuous by an amount equal to the surface current density. Similarly 5.27 (b) states 

that normal component of electric flux density vector is discontinuous across the interface 
by an amount equal to the surface current density while normal component of the magnetic 
flux density is continuous. 
If one side of the interface, as shown in fig 5.4, is a perfect electric conductor, say region 2, a 

surface current can exist even though is zero as .
Thus eqn 5.27(a) and (c) reduces to 

Wave equation and their solution: 

From equation 5.25 we can write the Maxwell's equations in the differential form as 
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Let us consider a source free uniform medium having dielectric constant , magnetic 

permeability and conductivity . The above set of equations can be written as 

Using the vector identity ,

We can write from 5.29(b) 

or     

Substituting from 5.29(a) 

But in source free medium (eqn 5.29(c)) 

                          (5.30)

In the same manner for equation eqn 5.29(a) 
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Since from eqn 5.29(d), we can write 

                          (5.31)

These two equations 

are known as wave equations.

It may be noted that the field components are functions of both space and time. For example, 

if we consider a Cartesian co ordinate system, essentially represents 

and . For simplicity, we consider propagation in free space , i.e. ,

and . The wave eqn in equations 5.30 and 5.31 reduces to 

Further simplifications can be made if we consider in Cartesian co ordinate system a special 

case where are considered to be independent in two dimensions, say are 

assumed to be independent of y and z. Such waves are called plane waves. 

From eqn (5.32 (a)) we can write 
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The vector wave equation is equivalent to the three scalar equations

Since we have ,

As we have assumed that the field components are independent of y and z eqn (5.34) 
reduces to 

                              (5.35)

i.e. there is no variation of Ex in the x direction. 

Further, from 5.33(a), we find that implies which requires any three of the 

conditions to be satisfied: (i) Ex=0, (ii)Ex = constant, (iii)Ex increasing uniformly with time. 

A field component satisfying either of the last two conditions (i.e (ii) and (iii))is not a part of a 

plane wave motion and hence Ex is taken to be equal to zero. Therefore, a uniform plane 

wave propagating in x direction does not have a field component (E or H) acting along x. 

Without loss of generality let us now consider a plane wave having Ey component only 

(Identical results can be obtained for Ez component) . 

The equation involving such wave propagation is given by 
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The above equation has a solution of the form 

where 

Thus equation (5.37) satisfies wave eqn (5.36) can be verified by substitution. 

corresponds to the wave traveling in the + x direction while 
corresponds to a wave traveling in the -x direction. The general solution of the wave eqn thus 
consists of two waves, one traveling away from the source and other traveling back towards 
the source. In the absence of any reflection, the second form of the eqn (5.37) is zero and 
the solution can be written as 

                  (5.38)

Such a wave motion is graphically shown in fig 5.5 at two instances of time t1 and t2. 

Fig 5.5 : Traveling wave in 
the + x direction 

Let us now consider the relationship between E and H components for the forward traveling 
wave.

Since and there is no variation along y and z.
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Since only z component of exists, from (5.29(b)) 

                      (5.39) 

and from (5.29(a)) with , only Hz component of magnetic field being present

                        (5.40)

Substituting Ey from (5.38) 

The constant of integration means that a field independent of x may also exist. However, this 
field will not be a part of the wave motion. 

Hence                         (5.41)

which relates the E and H components of the traveling wave.
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is called the characteristic or intrinsic impedance of the free space

ASSIGNMENT PROBLEMS

1. A rectangular loop of area rotates at rad/s in a magnetic fields of B 
Wb/m

2
normal to the axis of rotation. If the loop has N turns determine the induced 

voltage in the loop. 

2. If the electric field component in a nonmagnetic dielectric medium is given by 

determine the dielectric constant and the corresponding .

3. A vector field in phasor form is given by 

Express in instantaneous form. 

Unit V   Electromagnetic waves

In the previous chapter we introduced the equations pertaining to wave propagation and 
discussed how the wave equations are modified for time harmonic case. In this chapter we 
discuss in detail a particular form of electromagnetic wave propagation called 'plane waves'.
The Helmhotz Equation: 

    In source free linear isotropic medium, Maxwell equations in phasor form are,

              

or, 

or, 


