
UNIT V

FILES, MODULES, PACKAGES

1.FILE AND ITS OPERATION

 File is a collection of record.

 A file stores related data, information, settings or commands in secondary storage

device like magnetic disk, magnetic tape, optical disk, flash memory.

File Type

1. Text file

2. Binary file

Text file Binary file

Text file is a sequence of characters that can

be sequentially processed by a computer in

forward direction

Each line is terminated with a special

character called the E0L or end of line

character

A binary files store the data in the binary

format(i.e .0‟s and 1‟s)

It contains any type of data

(pdf,images,word doc,spreadsheet,zip

files,etc)

101

Mode in File

Module Description

r Read only

w

a

mode Write

only Appending

r+ only

Read and write only

Differentiate write and append mode:

Write mode Append mode

 It is used to write a string in a file

 If file is not exist it creates a new file

 If file is exit in the specified name,

the existing content will overwrite in

a file by the given string

 It is used to append (add) a string

into a file

 If file is not exist it creates a new file

 It will add the string at the end of the

old file

File Operation:

 Open a file

 Reading a file

 Writing a file

 Closing a file

hello guys

A file stores related data,

information, settings or commands

in secondary storage device like

magnetic disk, magnetic tape,

optical disk, flash memory.

102

1. Open () function:

 Pythons built in open function to get a file object.

 The open function opens a file.

 It returns a something called a file object.

 File objects can turn methods and attributes that can be used to collect

Syntax:

file_object=open(“file_name” , ”mode”)

Example:

fp=open(“a.txt”,”r”)

Create a text file

fp=open (“text.txt”,”w”)

2. Read () function

Read functions contains different methods

 read() – return one big string

 readline() – return one line at a time

 readlines() – return a list of lines

Syntax:

file_name.read ()

Example:

fp=open(“a.txt”,”w”)

print(fp.read())

print(fp.read(6))

print (fp.readline())

print (fp.readline(3))

print (fp.readlines())

a.txt

Output

103

A file stores related data,

information, settings or commands

in secondary storage device like

magnetic disk, magnetic tape,

optical disk, flash memory.

this file is a.txt to

add more lines

Reading file using looping:

 Reading a line one by one in given file

fp=open(“a.txt”,”r”)

for line in fp:

print(line)

3. Write () function

This method is used to add information or content to existing file.

Syntax:

file_name.write()

Example:

fp=open(“a.txt”,”w”)

fp.write(“this file is a.txt”)

fp.write(“to add more lines”)

fp.close()

Output: a.txt

4. Close () function

It is used to close the file.

Syntax:

File name.close()

Example:

fp=open(“a.txt”,”w”)

fp.write(“this file is a.txt”)

fp.write(“to add more lines”)

fp.close()

104

Splitting line in a text line:

fp=open(“a.txt”,”w”)

for line in fp:

words=line.split()

print(words)

2. Write a program for one file content copy into another file:

source=open(“a.txt”,”r”)

destination=open(“b.txt”,”w”)

for line in source:

destination.write(line)

source. close()

destination.close()

Output:

Input a.txt Output b.txt

A file stores related data, information,

settings or commands in secondary storage

device like magnetic disk, magnetic tape,

optical disk, flash memory

A file stores related data, information,

settings or commands in secondary storage

device like magnetic disk, magnetic tape,

optical disk, flash memory

3. Write a program to count number of lines, words and characters in a text file:

fp = open(“a.txt”,”r”)

line =0

word = 0

character = 0

for line in fp:

words = line . split ()

line = line + 1

word = word + len(words)

character = character +len(line)

print(“Number of line”, line)

print(“Number of words”, word)

print(“Number of character”, character)

Output:

Number of line=5

Number of words=15

Number of character=47

105

4. ERRORS,EXCEPTION HANDLING

Errors

 Error is a mistake in python also referred as bugs .they are almost always the fault of

the programmer.

 The process of finding and eliminating errors is called debugging

Types of errors

o Syntax error or compile time error

o Run time error

o Logical error

Syntax errors

 Syntax errors are the errors which are displayed when the programmer do mistakes

when writing a program, when a program has syntax errors it will not get executed
 Leaving out a keyword

 Leaving out a symbol, such as colon, comma, brackets

 Misspelling a keyword

 Incorrect indentation

Runtime errors

 If a program is syntactically correct-that is ,free of syntax errors-it will be run by

the python interpreter

 However, the program may exit unexpectedly during execution if it encounters a

runtime error.

 When a program has runtime error it will get executed but it will not produce output

 Division by zero

 Performing an operation on incompatible types

 Using an identifier which has not been defined

 Trying to access a file which doesn‟t exit

Logical errors

 Logical errors are the most difficult to fix

 They occur when the program runs without crashing but produces incorrect result

 Using the wrong variable name

 Indenting a blocks to the wrong level

 Using integer division instead of floating point division

 Getting operator precedence wrong

Exception handling

Exceptions

 An exception is an error that happens during execution of a program. When that Error

occurs

Errors in python

 IO Error-If the file cannot be opened.

 Import Error -If python cannot find the module

 Value Error -Raised when a built-in operation or function receives an argument that

has the right type but an inappropriate value

 Keyboard Interrupt -Raised when the user hits the interrupt

 EOF Error -Raised when one of the built-in functions (input() or raw_input()) hits an

end-of-file condition (EOF) without reading any data

106

Exception Handling Mechanism

1. try –except

2. try –multiple except

3. try –except-else

4. raise exception

5. try –except-finally

1. Try –Except Statements

 The try and except statements are used to handle runtime errors

Syntax:

try :

statements

except :

statements

The try statement works as follows:-

 First, the try clause (the statement(s) between the try and except keywords) is

executed.
 If no exception occurs, the except clause is skipped and execution of

the try statement is finished.

 If an exception occurs during execution of the try clause, the rest of the clause is

skipped. Then if its type matches the exception named after the except keyword,

the except clause is executed, and then execution continues after the try statement.

Example:

X=int(input(“Enter the value of X”))

Y=int(input(“Enter the value of Y”))

try:

result = X / (X – Y)

print(“result=”.result)

except ZeroDivisionError:

print(“Division by Zero”)

Output:1 Output : 2

Enter the value of X = 10 Enter the value of X = 10

Enter the value of Y = 5 Enter the value of Y = 10

Result = 2 Division by Zero

2. Try – Multiple except Statements
o Exception type must be different for except statements

Syntax:

try:

statements

except errors1:
statements

except errors2:

statements

except errors3:

statements

https://docs.python.org/3/reference/compound_stmts.html
https://docs.python.org/3/reference/compound_stmts.html

107

Example

X=int(input(“Enter the value of X”))

Y=int(input(“Enter the value of y”))

try:

sum = X + Y

divide = X / Y
print (“ Sum of %d and %d = %d”, %(X,Y,sum))

print (“ Division of %d and %d = %d”, %(X,Y,divide))

except NameError:

print(“ The input must be number”)

except ZeroDivisionError:

print(“Division by Zero”)

Output:1 Output 2: Output 3:

Enter the value of X = 10 Enter the value of X = 10 Enter the value of X = 10

Enter the value of Y = 5 Enter the value of Y = 0 Enter the value of Y = a

Sum of 10 and 5 = 15 Sum of 10 and 0 = 10 The input must be number

Division of 10 and 5 = 2 Division by Zero

3. Try –Except-Else

o The else part will be executed only if the try block does not raise the exception.

o Python will try to process all the statements inside try block. If value error occur,

the flow of control will immediately pass to the except block and remaining

statements in try block will be skipped.

Syntax:

try:

statements

except:

statements

else:

statements

Example

X=int(input(“Enter the value of X”))

Y=int(input(“Enter the value of Y”))

try:

result = X / (X – Y)

except ZeroDivisionError:

print(“Division by Zero”)

else:

print(“result=”.result)
Output:1

Enter the value of X = 10

Enter the value of Y = 5

Result = 2

Output : 2

Enter the value of X = 10

Enter the value of Y = 10

Division by Zero

108

4. Raise statement

 The raise statement allows the programmer to force a specified exception to occur.

Example:

>>> raise NameError('HiThere')

Output:

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

NameError: HiThere
 If you need to determine whether an exception was raised but don‟t intend to handle

it, a simpler form of the raise statement allows you to re-raise the exception:

Example
try:

... raise NameError('HiThere')

... except NameError:

... print('An exception flew by!')

... raise

Output:
An exception flew by! Traceback

(most recent call last):

File "<stdin>", line 2, in <module>

NameError: HiThere

5. Try –Except-Finally

 A finally clause is always executed before leaving the try statement, whether an

exception has occurred or not.
 The finally clause is also executed “on the way out” when any other clause of the

try statement is left via a break, continue or return statement.

Syntax

try:

statements

except:

statements

finally:

statements

Example

X=int(input(“Enter the value of X”))

Y=int(input(“Enter the value of Y”))

try:

result = X / (X – Y)

except Zero DivisionError:

print(“Division by Zero”)

else:

print(“result=”.result)

finally:

print (“executing finally clause”)

Output:1 Output : 2

Enter the value of X = 10 Enter the value of X = 10

Enter the value of Y = 5 Enter the value of Y = 10

Result = 2 Division by Zero

executing finally clause executing finally clause

https://docs.python.org/3/reference/simple_stmts.html
https://docs.python.org/3/reference/simple_stmts.html

109

5. MODULES IN PYTHON

 A python module is a file that consists of python definition and statements. A module

can define functions, classes and variables.

 It allows us to logically arrange related code and makes the code easier to understand

and use.

1. Import statement:

 An import statement is used to import python module in some python source file.

Syntax: import module1 [, module2 […module]]

Example:

>>>import math

>>>print (math.pi)

3.14159265

2. Import with renaming:

The import a module by renaming it as follows,

>>>import math as a

>>>print(“The value of pi is “,a.pi)

The value of pi is 3.14159265

Writing modules:

 Any python source code file can be imported as a module into another python source

file. For example, consider the following code named as support.py, which is python

source file defining two function add(), display().

Support.py:

def add(a,b):

print(“The result is “,a+b)

return

def display(p):

print(“welcome “,p)

return

The support.py file can be imported as a module into another python source file and

its functions can be called from the new files as shown in the following code:

3. Import file name

import support

support.add(3,4)

#import module support

#calling add() of support module with two integers

support.add (3.5,4.7) #calling add() of support module with two real values

support.add („a‟,‟b‟) #calling add() of support module with two character values

support.add (“yona”,”alex”)#calling add() of support module with two string values

support.display („fleming‟) #calling display() of support module with a string value

110

Output:

The result is 7

The result is 8.2

The result is ab
The result is yonaalex

Welcome, fleming

4. from……import statement:

 It allows us to import specific attributes from a module into the current

namespace.

Syntax: from modulename import name1 [, name2[,……nameN]]

from support import add

support.add(3,4)

support.add(3.5,4.7)

support.add(„a‟,‟b‟)

#import module support

#calling add() of support module with two integers

#calling add() of support module with two real values

#calling add() of support module with two character values

support.add (“yona”,”alex”)#calling add() of support module with two string values

support.display („fleming‟)

Output:

The result is 7

The result is 8.2

The result is ab

The result is yonaalex

Welcome, fleming

#calling display() of support module with a string value

5. OS Module

 The OS module in python provide function for interacting with operating

system

 To access the OS module have to import the OS module in our program

import os

method example description

name Osname „nt‟ This function gives the name
of the operating system

getcwd() Os,getcwd()

,C;\\Python34‟

Return the current working

directory(CWD)of the file

used to execute the code
mkdir(folder) Os.mkdir(“python”) Create a directory(folder)

with the given name

rename(oldname,newname) Os.rename(“python”,”pspp”) Rename the directory or
folder

remove(“folder”) Os.remove(“pspp”) Remove (delete)the directory
or folder

111

getuid() Os.getuid() Return the current process‟s

user id

environ Os.nviron Get the users environment

6. Sys Module

 Sys module provides information about constant, function and methods

 It provides access to some variables used or maintained by the interpreter

import sys

methods example description

sys.argv sys.argv

sys.argv(0)

sys.argv(1)

Provides the list of

command line arguments

passed to a python script

Provides to access the file

name

Provides to access the first

input

sys.path sys.path It provide the search path
for module

sys.path.append() sys.path.append() Provide the access to
specific path to our program

sys.platform sys.platform

„win32‟
Provide information about

the operating system

platform
sys.exit sys.exit

<built.in function exit>

Exit from python

Steps to Create the Own Module

 Here we are going to create a calc module ; our module contains four functions

i.e add(),sub(),mul(),div()

Program for calculator module output

Module name ;calc.py

def add(a,b);

print(a+b)

def sub(a,b);
print(a-b)

def mul(a,b);

print(a*b)

def div(a,b);

print(a/b)

import calculator

calculator.add(2,3)

Outcome

>>>5

6. PACKAGES IN PYTHON

 A package is a collection of python module. Module is a single python file containing

function definitions

 A package is a directory(folder)of python module containing an additional init py

file, to differentiate a package from a directory

 Packages can be nested to any depth, provided that the corresponding directories

contain their own init py file.

 init py file is a directory indicates to the python interpreter that the directory

should be treated like a python package init py is used to initialize the python

package

Steps to Create a Package Step1:

create the package directory

 Create the directory (folder)and give it your packages name

 Here the package name is calculator

112

Name Data modified Type

1. pycache 05-12-2017 File folder

2.calculater 08-12-2017 File folder

3. DLLs 10-12-2017 File folder

Step2: write module for calculator directory add save the module in calculator directory

 Here four module have create for calculator directory

Local Disk (C)>Python34>Calculator

add.py div.py mul.py sub.py

def add(a,b);

print(a+b)

def div(a,b);

print(a/b)

def mul(a,b);

print(a*b)

def sub(a,b);

print(a-b)

Step3: add the init .py file in the calculator directory

 A directory must contain the file named init .py in order for python to consider it

as a package

Name Data modified Type Size

1. add 08-12-2017 File folder 1KB

2. div 08-12-2017 File folder 1KB

3. mul 08-12-2017 File folder 1KB

4. sub 08-12-2017 File folder 1KB

from * add import add

from * sub import sub

from * mul import mul

from * div import div

Add the following code in the init .py file

113

Local Disk (C):/Python34>Calculator

Name Data modified Type Size

1. init 08-12-2017 File folder 1KB

2. add 08-12-2017 File folder 1KB

3. div 08-12-2017 File folder 1KB

4. mul 08-12-2017 File folder 1KB

5. sub 08-12-2017 File folder 1KB

Step4: To test your package

 Import calculator package in your program and add the path of your package in your

program by using sys.path.append()

Example

import calculator

importsys

sys.path.append(“C:/Python34”)

print (calculator.add(10,5)) print

(calculator.sub(10,5))
print (calculator.mul(10,5))

print (calculator.div(10,5))

Output :

>>> 15

5

50

2

114

Two marks:

1. Why do we go for file?

File can a persistent object in a computer. When an object or state is created and needs to be

persistent, it is saved in a non-volatile storage location, like a hard drive.

2. What are the three different mode of operations of a file?

The three mode of operations of a file are,

i. Open – to open a file to perform file operations

ii. Read – to open a file in read mode

iii. Write – to open a file in write mode

3. State difference between read and write in file operations.

Read Write

A "Read" operation occurs when a computer
program reads information from a computer
file/table (e.g. to be displayed on a screen).

The "read" operation gets

information out of a file.

A "Write" operation occurs when a computer
program adds new information, or changes
existing information in a computer file/table.

After a "read", the information from the
file/table is available to the computer program
but none of the information that was read
from the file/table is changed in

any way.

After a "write", the information from the
file/table is available to the computer program
but the information that was read from the
file/table can be changed in any

way.

4. Differentiate error and exception.

Errors

 Error is a mistake in python also referred as bugs .they are almost always the fault of the

programmer.

 The process of finding and eliminating errors is called debugging

 Types of errors

 Syntax error or compile time error

 Run time error

 Logical error

Exceptions

An exception is an error that happens during execution of a program. When that Error occurs

5. Give the methods of exception handling.

1. try –except

2. try –multiple except

3. try –except-else

4. raise exception

5. try –except-finally

6. State the syntax for try…except block

The try and except statements are used to handle runtime errors

Syntax:

try :

statements

except:

statements

7. Write a program to add some content to existing file without effecting the existing content.

file=open(“newfile.txt”,‟a)

file.write(“hello”)

newfile.txt

Hello!!World!!!

newfile.txt(after updating)

Hello!!!World!!!hello

8. What is package?

 A package is a collection of python module. Module is a single python file containing function

definitions

 A package is a directory(folder)of python module containing an additional init py file, to

differentiate a package from a directory

 Packages can be nested to anydepth, provided that the corresponding directories contain their

own init py file

9. What is module?

A python module is a file that consists of python definition and statements. A module can

define functions, classes and variables.

makes the code easier to understand and use.

10. Write the snippet to find the current working directory.

Import os

print(os.getcwd))

Output:

C:\\Users\\Mano\\Desktop

115

116

11. Give the use of format operator

The argument of write has to be a string, so if we want to put other values in a file, we

have to convert them to strings. The easiest way to do that is with str:

>>> x = 52

>>> fout.write(str(x))

An alternative is to use the format operator, %. When applied to integers, % is the

modulus operator. But when the first operand is a string, % is the format operator. The

first operand is the format string, which contains one or more format sequences,

which specify how the second operand is formatted. The result is a string. For

example, the format sequence '%d' means that the second operand should be formatted

as an integer (d stands for “decimal”):

>>> camels = 42

>>>'%d' % camels '42'

The result is the string '42', which is not to be confused with the integer value 42.

12. Write the snippet to find the absolute path of a file.

import os

os.path.abspath('w

rite.py')

Output:

'C:\\Users\\Mano\\Desktop\\write.py'

13. What is the use of os.path.isdir() function.

os.path.isdir() is a function defined in the package os. The main function of isdir(“some

input”) function is to check whether the passed parameter is directory or not. isdir()

function will only return only true or false.

14. What is the use of os.path.isfile() function.

os.path.isfile () is a function defined in the package os. The main function of isfile (“some

input”) function is to check whether the passed parameter is file or not. isfile () function

will only return only true or false.

15. What is command line argument?

sys.argv is the list of command line arguments passed to the Python program.

Argv represents all the items that come along via the command line input, it's basically

an array holding the command line arguments of our program.

