

UNIT-2

Interface in Java

Interface in Java

 An interface in Java is a blueprint of a

class. It has static constants and abstract

methods

 The interface in Java is a mechanism to

achieve abstraction. There can be only

abstract methods in the Java interface, not

method body. It is used to achieve

abstraction and multiple inheritance in

Java.

https://www.javatpoint.com/abstract-class-in-java
https://www.javatpoint.com/inheritance-in-java
https://www.javatpoint.com/inheritance-in-java

 Java Interface also represents the IS-A

relationship.

 It cannot be instantiated just like the

abstract class.

 Since Java 8, we can have default and

static methods in an interface.

 Since Java 9, we can have private

methods in an interface

 A real-world example:

Let’s consider the example of vehicles like

bicycle, car, bike………, they have

common functionalities. So we make an

interface and put all these common

functionalities. And lets Bicycle, Bike, car

….etc implement all these functionalities

in their own class in their own way

 There are mainly three reasons to use

interface.

 It is used to achieve abstraction.

 By interface, we can support the

functionality of multiple inheritance.

 It can be used to achieve loose coupling

How to declare an interface

 An interface is declared by using the

interface keyword.

 It provides total abstraction; means all

the methods in an interface are declared

with the empty body, and all the fields are

public, static and final by default.

 A class that implements an interface

must implement all the methods declared

in the interface.

Java Interface Example

In this example, the Printable interface has

only one method, and its implementation is

provided in the A6 class

Java Interface Example: Drawable

Java Interface Example: Drawable

 In this example, the Drawable interface has

only one method. Its implementation is
provided by Rectangle and Circle classes. In a
real scenario, an interface is defined by
someone else, but its implementation is
provided by different implementation
providers. Moreover, it is used by someone
else. The implementation part is hidden by
the user who uses the interface.

Multiple inheritance in Java by

interface

If a class implements multiple interfaces, or an interface extends multiple

interfaces, it is known as multiple inheritance.

Multiple inheritance in Java by

interface

Key points to remember about

interfaces
 We can’t instantiate an interface in java. That means we

cannot create the object of an interface

 Interface provides full abstraction as none of its methods
have body. On the other hand abstract class provides partial
abstraction as it can have abstract and concrete(methods with
body) methods both.

 “implements” keyword is used by classes to implement an
interface.

 While providing implementation in class of any method of an
interface, it needs to be mentioned as public.

 Class that implements any interface must implement all the
methods of that interface, else the class should be declared
abstract.

 Interface cannot be declared as private, protected or transient.

 All the interface methods are by default abstract and public.

 Variables declared in interface are public, static and final by
default.

Advantages of interface in java

 Without bothering about the

implementation part, we can achieve the

security of implementation

 In java, multiple inheritance is not

allowed, however you can use interface to

make use of it as you can implement

more than one interface.

DIFFERENCE BETWEEN ABSTRACT CLASS

AND INTERFACE

FINAL KEYWORD

 Final keyword can be used along with

variables, methods and classes.

 1) final variable

 2) final method

 3) final class

1. Java final variable

 A final variable is a variable whose value
cannot be changed at anytime once assigned, it
remains as a constant forever.

2. Java final method

 When you declare a method as final, then it is
called as final method. A final method cannot
be overridden.

3. Java final class

 A final class cannot be extended(cannot be
subclassed), lets take a look into the below
example package com.javainterviewpoint;

OBJECT CLONING

 The object cloning is a way to create exact

copy of an object. The clone() method of
Object class is used to clone an object.

 The java.lang.Cloneable interface must be
implemented by the class whose object clone
we want to create. If we don't implement
Cloneable interface, clone() method generates
CloneNotSupportedException.

 The clone() method is defined in the Object
class.

Syntax of the clone() method:

protected Object clone() throws
CloneNotSupportedException

Advantage of Object cloning

 You don't need to write lengthy and

repetitive codes.

 Just use an abstract class with a 4- or 5-line
long clone() method.

 It is the easiest and most efficient way for
copying objects, especially if we are applying
it to an already developed or an old project.

 Just define a parent class, implement
Cloneable in it, provide the definition of the
clone() method and the task will be done.

 Clone() is the fastest way to copy array.

Disadvantage of Object cloning

 To use the Object.clone() method, we have to
change a lot of syntaxes to our code, like
implementing a Cloneable interface, defining the
clone() method and handling
CloneNotSupportedException, and finally, calling
Object.clone() etc.

 Object.clone() is protected, so we have to
provide our own clone() and indirectly call
Object.clone() from it.

 Object.clone() doesn?t invoke any constructor so
we don?t have any control over object
construction.

INNER CLASSES

 Inner class means one class which is a

member of another class. There are

basically four types of inner classes in java.

 1) Nested Inner class

 2) Method Local inner classes

 3) Anonymous inner classes

 4) Static nested classes

Nested Inner class

 Nested Inner class can access any private

instance variable of outer class. Like any

other instance variable, we can have

access modifier private, protected, public

and default modifier. Like class, interface

can also be nested and can have access

specifiers.

Example: Nested Inner class
class Outer {

// Simple nested inner class

public void show() {

System.out.println("In a nested class method");

}

}

}

class Main {

public static void main(String[] args) {

Outer.Inner in = new Outer().new Inner();

in.show();

}

}

Output:

In a nested class method ass class Inner

Method Local inner classes

 Inner class can be declared within a

method of an outer class. In the following

example, Inner is an inner class in

outerMethod().

Example:
 class Outer {

void outerMethod() {

 System.out.println("inside outerMethod"); // Inner class is local to
outerMethod() class Inner {

void innerMethod() {

System.out.println("inside innerMethod");

}

}

Inner y = new Inner();

y.innerMethod();

}

}

class MethodDemo {

public static void main(String[] args) {

Outer x = new Outer(); x.outerMethod();

}

}

Output:

Inside outerMethod Inside innerMethod

Static nested classes

 Static nested classes are not technically an inner class. They are like a static

member of outer

Example:

class Outer {

private static void outerMethod() {

System.out.println("inside outerMethod");

}

// A static inner class static class Inner {

public static void main(String[] args) {

System.out.println("inside inner class Method");

 outerMethod();

}

}

}

Output:

inside inner class Method inside outerMethod

Anonymous inner classes

 Anonymous inner classes are declared

without any name at all. They are created

in two ways.

STRINGS IN JAVA

 In java, string is basically an object that

represents sequence of char values. Java
String provides a lot of concepts that can be
performed on a string such as compare,
concat, equals, split, length, replace,
compareTo, intern, substring etc.

 In java, string objects are immutable.
Immutable simply means unmodifiable or
unchangeable. String s="javatpoint";

 There are two ways to create String object:

 1. By string literal

 2. By new keyword

 1) String Literal

 Java String literal is created by using

double quotes. For Example: String

s="welcome";

 2) By new keyword

 String s=new String("Welcome");

 Page

 Java String

 In Java, string is basically an object that

represents sequence of char values.

An array of characters works same as Java

string. For example:

 char[] ch={'j','a','v','a','t','p','o','i','n','t'};

 String s=new String(ch);

String s="welcome";

https://www.javatpoint.com/java-tutorial
https://www.javatpoint.com/array-in-java

String methods:

ArrayList class declaration

Syntax
public class ArrayList<E> extends

AbstractList<E> implements

List<E>, RandomAccess, Clone able,

Serializable

Java ArrayList class

 Java ArrayList class uses a dynamic array for storing

the elements. It inherits AbstractList class and
implements List interface.

 The important points about Java ArrayList class are:

 Java ArrayList class can contain duplicate elements.

 Java ArrayList class maintains insertion order.

 Java ArrayList class is non synchronized.

 Java ArrayList allows random access because array
works at the index basis.

 In Java ArrayList class, manipulation is slow because a
lot of shifting needs to be occurred

 if any element is removed from the array list.

Java ArrayList Example: Book

Example:

 import java.util.*; class Book {

int id;

String name,author,publisher; int quantity;

public Book(int id, String name, String author, String
publisher, int quantity) {

this.id = id;

this.name = name;

this.author = author;

this.publisher = publisher;

this.quantity = quantity;

}

}

public class ArrayListExample { public static void main(String[]
args) {

//Creating list of Books

List<Book> list=new ArrayList<Book>();

//Creating Books

Book b1=new Book(101,"Let us C","Yashwant
Kanetkar","BPB",8);

Book b2=new Book(102,"Data Communications &
Networking","Forouzan","Mc Graw Hill",4);

Book b3=new Book(103,"Operating
System","Galvin","Wiley",6);

//Adding Books to list list.add(b1); list.add(b2); list.add(b3);
//Traversing list for(Book b:list){

System.out.println(b.id+" "+b.name+" "+b.author+"
"+b.publisher+" "+b.quantity);

}

}

}

Java String

Java String

Java String

In Java, string is basically an object that

represents sequence of char values.

An array of characters works same as Java

string. For example:

char[] ch={'j','a','v','a','t','p','o','i','n','t'};

String s=new String(ch);

String s="javatpoint";

https://www.javatpoint.com/java-tutorial
https://www.javatpoint.com/array-in-java

 Java String class provides a lot of methods

to perform operations on strings such as

compare(), concat(), equals(), split(), length(),

replace(), compareTo(), intern(), substring() etc

Java String compare

 We can compare string in java on the basis of content

and reference.

 It is used in authentication (by equals()
method), sorting (by compareTo()
method), reference matching (by == operator)
etc.

 There are three ways to compare string in java:

By equals() method

By = = operator

By compareTo() method

String compare by equals() method

 The String equals() method compares the

original content of the string. It compares
values of string for equality. String class
provides two methods:

 public boolean equals(Object
another) compares this string to the
specified object.

 public boolean
equalsIgnoreCase(String
another) compares this String to another
string, ignoring case

 String compare by compareTo()

method

 The String compareTo() method

compares values lexicographically and
returns an integer value that describes if
first string is less than, equal to or greater
than second string.

 Suppose s1 and s2 are two string
variables. If:

 s1 == s2 :0

 s1 > s2 :positive value

 s1 < s2 :negative value

Substring in Java

 A part of string is called substring. In other words,

substring is a subset of another string. In case of
substring startIndex is inclusive and endIndex is
exclusive.

 public String substring(int startIndex): This
method returns new String object containing the
substring of the given string from specified startIndex
(inclusive).

 public String substring(int startIndex, int
endIndex): This method returns new String object
containing the substring of the given string from
specified startIndex to endIndex

 startIndex: inclusive

 endIndex: exclusive

 Output:

 101 Let us C Yashwant Kanetkar BPB 8

 102 Data Communications & Networking

Forouzan Mc Graw Hill 4 103 Operating

System Galvin Wiley 6

