UNIT-2

Interface in Java

Interface in Java

* An interface in Java is a blueprint of a
class. It has static constants and abstract
methods

* The interface in Java is a mechanism to
achieve .There can be only
abstract methods in the Java interface, not
method body. It is used to achieve
abstraction and multiple

https://www.javatpoint.com/abstract-class-in-java
https://www.javatpoint.com/inheritance-in-java
https://www.javatpoint.com/inheritance-in-java

* Java Interface also represents the IS-A
relationship.

e It cannot be instantiated just like the
abstract class.

e Since Java 8, we can have default and
static methods in an interface.

e Since Java 9, we can have private
methods in an interface

e A real-world example:
Let’s consider the example of vehicles like
bicycle, car, bike......... , they have
common functionalities. So we make an
interface and put all these common
functionalities. And lets Bicycle, Bike, car
....etc implement all these functionalities
in their own class in their own way

* There are mainly three reasons to use
interface.

e |t is used to achieve abstraction.

* By interface, we can support the
functionality of multiple inheritance.

* [t can be used to achieve loose coupling

How to declare an interface

 An interface is declared by using the
interface keyword.

* |t provides total abstraction; means all
the methods in an interface are declared
with the empty body, and all the fields are
public, static and final by default.

A class that implements an interface

must implement all the methods declared
in the interface.

Syntax:

interface <interface_name={

[declare constant fields
[declare methods that abstract
[/ by default.

b
interface Printable{ interface Printable{
int MIN=5; T~ public static final int MIN=5;
L — compiler —» _ L
void print(); -~ public abstract void print();
1 }

Printable java Printable.class

Java Interface Example

interface printable{
woid print(};
by

class A6 implements printable<

public void print(){System.out.printin{"Hello"}; >

public static void main{sString args[])4
AS ob] = new AG();

obj.print();

¥

¥

In this example, the Printable interface has
only one method, and its implementation is
provided in the A6 class

Java Interface Example: Drawable

J//Interface declaration: by first user

interface Drawable{

void draw();

by

J/Implementation: by second user

class Rectangle implements Drawable{

public void draw(){System.out.printin{"drawing rectangle");
h

class Circle implements Drawable{

public void draw(){System.out.printin{"drawing circle"); }

¥

J//Using interface: by third user

class TestInterfacel{

public static void main(String args[])}{

Drawable d=mew Circle();//In real scenario, object is provided by method e.g. getDrawable()

d.draw()};
T

Java Interface Example: Drawable

e |n this

example, the Drawable interface has

only one method. Its implementation is
provided by Rectangle and Circle classes. In a
real scenario, an interface is defined by
someone else, but its implementation is

provia
provia

ed by different implementation
ers. Moreover, it is used by someone

else. T

ne implementation part is hidden by

the user who uses the interface.

Multiple inheritance in Java by
interface

interface interface interface interface
A 3 v
\ & /7
AN . P & implements extends
\ pal
class interface
Multiple Inheritance in Java

If a class implements multiple interfaces, or an interface extends multiple
interfaces, it is known as multiple inheritance.

Multiple inheritance in Java by
interface

interface Printable{

void print()};

h

interface Showable{

void show();

b

class A7 implements Printable, Showable{

public void print(){System.out.printin{"Hello"); }
public void show(){System.out.println{"Welcome"}; ¥

public static void main{String args[]1){
A7 ob] = new A7();

obj.print();

obj.show();

¥

h

)

Output:Hello

Welcome

Key points to remember about

[]

interfaces

. We can’t instantiate an interface in java. That means we
cannot create the object of an interface

. Interface provides full abstraction as none of its methods

have body. On the other hand abstract class provides partial
abstraction as it can have abstract and concrete(methods with
body) methods both.

“implements” keyword is used by classes to implement an

interface.

° While providing implementation in class of any method of an
interface, it needs to be mentioned as public.

. Class that implements any interface must implement all the

methods of that interface, else the class should be declared
abstract.

. Interface cannot be declared as private, protected or transient.
. All the interface methods are by default abstract and public.
. Variables declared in interface are public, static and final by

default.

Advantages of interface in java

* Without bothering about the
implementation part, we can achieve the
security of implementation

* |n java, multiple inheritance is not
allowed, however you can use interface to
make use of it as you can implement
more than one interface.

DIFFERENCE BETWEEN ABSTRACT CLASS

AND INTERFACE

ABSTRACT CLASS

INTERFACE

1) Abstract class can have abstract and non-
abstract methods.

Interface can have only abstract methods. Sinc
Java 8, it can have default and static
methods also.

2) Abstract class doesn't support multiple

inheritance.

Interface supports multiple inheritance.

3) Abstract class can have final, non-final,

static and non-static variables.

Interface has only static and final variables.

4) Abstract class can provide the

implementation of interface.

Interface can't provide the implementation of

abstract class.

5) The abstract keyword is used to declare

“abstract class.

The interface keyword is used to declare

intertace.

6) An abstract class can extend another Java

class and implement multiple Java interfaces.

An interface can extend another Java intertace

only.

7) An abstract class can be extended using

kevword extends.

An interface class can be iu1plen1@11ted usﬁlg

keyword implements

8) A Java abstract class can have class members

like private, protected, etc.

Members of a Java interface are public by
detault.

9)Example:
public abstract class Shape|
public abstract void draw();

|

Example:
public interface Drawable|

void draw();

|

FINAL KEYWORD

e Final keyword can be used along with
variables, methods and classes.

* 1) final variable
¢ 2) final method

 3) final class

l. Java final variable

A final variable is a variable whose value
cannot be changed at anytime once assigned, it
remains as a constant forever.

2. Java final method

* When you declare a method as final, then it is
called as final method. A final method cannot
be overridden.

3. Java final class

A final class cannot be extended(cannot be
subclassed), lets take a look into the below
example package com.javainterviewpoint;

OBJECT CLONING

e The object cloning is a way to create exact
copy of an object.The clone() method of
Object class is used to clone an object.

e The java.lang.Cloneable interface must be
implemented by the class whose object clone
we want to create. If we don't implement
Cloneable interface, clone() method generates
CloneNotSupportedException.

e The clone() method is defined in the Object
class.

Syntax of the clone() method:

protected Object clone() throws
CloneNotSupportedException

Advantage of Object cloning

* You don't need to write lengthy and
repetitive codes.

e Just use an abstract class with a 4- or 5-line
long clone() method.

* |t is the easiest and most efficient way for
copying objects, especially if we are applying
it to an already developed or an old project.

e Just define a parent class, implement

Cloneable in it, provide the definition of the
clone() method and the task will be done.

* Cloneg() is the fastest way to copy array.

Disadvantage of Object cloning

* To use the Object.clone() method, we have to
change a lot of syntaxes to our code, like
implementing a Cloneable interface, defining the
clone() method and handling
CloneNotSupportedException, and finally, calling
Obiject.clone() etc.

* Object.clone() is protected, so we have to
provide our own clone() and indirectly call
Obiject.clone() from it.

e Object.clone() doesn?t invoke any constructor so
we don?t have any control over object
construction.

l::"{s"lll"l_l_"'J_E" oI Clone() merhod (v U]ECI’ Clﬂﬂll‘lgj

class Student implements Cloneable{
int rollno:

String name;

Student(int rollno,String

name){ this.rollno=rollno;
this.name=name;

)

public Object clone()throws CloneNotSupported Exception|
return super.clone();

}

public static void main(String args[])}{

try|

Student sl=new Student(101,"amit");

Student s2=(Student)sl.clone();
System.out.println(sl.rollno+" "+sl.name);
System.out.println(s2.rollno+" "+s2.name);

)

C
}
¥
Output:
101 amuat
101 amit

atch(CloneNotSupported Exception c){}

INNER CLASSES

e Inner class means one class which is a
member of another class. There are
basically four types of inner classes in java.

* |) Nested Inner class

* 2) Method Local inner classes
* 3) Anonymous inner classes

* 4) Static nested classes

Nested Inner class

* Nested Inner class can access any private
instance variable of outer class. Like any
other instance variable, we can have
access modifier private, protected, public
and default modifier. Like class, interface
can also be nested and can have access

specifiers.

Example: Nested Inner class

class Outer {

/] Simple nested inner class

public void show() {

System.out.println("In a nested class method");

}
}
}

class Main {

public static void main(String[] args) {
Outer.Inner in = new Outer().new Inner();
in.show();

}
}

Output:
In a nested class method ass class Inner

Method Local inner classes

* Inner class can be declared within a
method of an outer class. In the following
example, Inner is an inner class in
outerMethod().

Example:

class Outer {
void outerMethod() {

System.out.printIn("inside outerMethod"); // Inner class is local to
outerMethod() class Inner {

void innerMethod() {
System.out.printIn(“inside innerMethod");

}
}

Inner y = new Inner();
y.innerMethod();

}
}

class MethodDemo {
public static void main(String[] args) {
Outer x = new Outer(); x.outerMethod();

}
}

Output:
Inside outerMethod Inside innerMethod

Static nested classes

 Static nested classes are not technically an inner class.They are like a static
member of outer

Example:

class Outer {

private static void outerMethod() {
System.out.printin("inside outerMethod");

}

/I A static inner class static class Inner {

public static void main(String[] args) {
System.out.printIn("inside inner class Method");
outerMethod();

}
}
}

Output:
inside inner class Method inside outerMethod

Anonymous inner classes

* Anonymous inner classes are declared
without any name at all. They are created
In two ways.

Type Description

Member Inner Class A class created within class and outside method.

Anonymous Inner Class | A'class created for implementing inferface or extending class,

Its name is decidzd by the java compiler.

Method Local Inner Class | A class created within method.

Static Nested Class A static class created within class.

Nested Inferface An interface created within class or mnterface.

STRINGS IN JAVA

* |n java, string is basically an object that
represents sequence of char values. Java
String provides a lot of concepts that can be
performed on a string such as compare,
concat, equals, split, length, replace,
compare o, intern, substring etc.

* |n java, string objects are immutable.
Immutable simply means unmodifiable or
unchangeable. String s="javatpoint”;

* There are two ways to create String object:
* |. By string literal
* 2. By new keyword

e |) String Literal

e Java String literal is created by using
double quotes. For Example: String
s="welcome’;

* 2) By new keyword
» String s=new String("Welcome");
* Page

* Java String

* In , string is basically an object that
represents sequence of char values.
An of characters works same as Java
string. For example:

° Char[] Ch {l re_nie 1l |a| |t| 'P"' 1 1l lnl’ltl}’
* String s=hew Strlng(ch);
String s="welcome";

https://www.javatpoint.com/java-tutorial
https://www.javatpoint.com/array-in-java

String methods:

String methods:

1. | char charAt(int index) returns char value tor the particular index

2. | int length() returns string length

3. | static String format(String format, returns formatted string
Object... args)

4. | static String format(Locale I, String returns formatted string with given locale
tormat, Object... args)

5. | String substring(int beginlndex) returns substring for given begin index

6. | String substring(int beginIndex, int returns substring for given begin index and end

endIndex)

index

~

boolean contains(CharSequence s)

returns true or false atter matching the sequence
of char value

8. | static String join(CharSequence returns a joined string
delimiter, CharSequence... elements)
9. | static String join(CharSequence returns a joined string
delimiter, Iterable<? extends
CharSequence> elements)
10.] boolean equals(Object another) checks the equality of string with object
11.] boolean isEmptv() checks if string is empty
12.] String concat(String str) concatinates specified string

14.| String replace(CharSequence old, replaces all occurrences of specified
CharSequence new) CharSequence
15.| static String equalslgnoreCase(String | compares another string. It doesn't check case.
another)
16.| String[] split(String regex) returns splitted string matching regex
7.| String][] split(String regex, int limit) returns splitted string matching regex and limit
18.| String intern() returns interned string
19.| int indexOf(int ch) returns specified char value index
20.| int indexOf(int ch, int fromIndex) returns specified char value index starting with
oiven index
21.| int indexOf(String substring) returns specified substring index
22| int indexOf(String substring, int returns specitied substring index starting with
fromIndex) given index
23.| String toLowerCase() returns string in lowercase.
24| String toLowerCase(Locale) returns string in lowercase using specitied locale.
25.| String toUpperCase() returns string in uppercase.
26.| String toUpperCase(Locale 1) returns string in uppercase using specified
locale.
27.| String trim() removes beginning and ending spaces of this

B S

/ Java String Example

o

a3 public class StringExample{

: public static void main(5tring args[]){

\ 5tring s1="java";//creating string by java string literal

B B | char ch[]={"s","t",'r',"1",'n","g",'s"};
String s2=new S5tring(ch);//converting char array to string
String s3=new String{"example");//creating java string by new keyword
System.out.printin(s1);
System.out.printin{s2};
System.out.printin{s3);

h

| Test it Now

java
strings

example

1

ArrayList class declaration

Syntax

public class ArrayList<E> extends
AbstractList<E> implements

List<E>, RandomAccess, Clone able,
Serializable

Java ArrayL.ist class

 Java ArrayList class uses a dynamic array for storing
the elements. It inherits AbstractList class and
implements List interface.

e The important points about Java ArrayList class are:
e Java ArrayList class can contain duplicate elements.
* Java ArrayList class maintains insertion order.
 Java ArrayList class is non synchronized.

 Java ArrayList allows random access because array
works at the index basis.

* In Java ArrayList class, manipulation is slow because a
lot of shifting needs to be occurred

e if any element is removed from the array list.

Lonstructors of Java AmayList

CONSTRUCTOR DESCRIPTION
AvayList 5 used to buld an empty aney st
AvayListColletionc] | Tt is used to buald an amay Lt that is idfalzed wih the

elements of the collaction ¢

AveayLisnt capacity] | Tt used to build am auvay lis that hs the speciied il

cananity.

Methods of Java ArrayList

METHOD

DESCRIPTION

void add(int index, Object
element)

It is used to insert the specified element at the specified position
index in a list.

boolean add All(Collection
c)

It is used to append all of the elements in the specitied collection
to the end of this list, in the order that they are returned by the
specified collection's iterator.

void clear()

It is used to remove all of the elements from this list.

int lastindexOf(Object o)

It is used to return the index in this list of the last occurrence of
the specitied element, or -1 if the list does not contain this element.

Object[] toArray()

It is used to return an array containing all of the elements in this
list in the correct order.

Object[] toArray(Object]]
a)

It is used to return an array containing all of the elements in this
list in the correct order.

boolean add(Object o)

It is used to append the specified element to the end of a list.

boolean addAll(int index,
Collection ¢)

It is used to insert all of the elements in the specitied collection
into this list, starting at the specitied position.

Object clone()

It is used to return a shallow copy of an ArrayList.

int indexOf(Object o)

[t is used to return the index in this list of the first occurrence of
the specified element, or -1 if the List does not contain this

L'ill.'l1"|"iﬂ1'\'|'

Java ArrayList Example: Book
Example:

import java.util.*; class Book {
int id;
String name,author,publisher; int quantity;

public Book(int id, String name, String author, String
publisher, int quantity) {

this.id = id;

this.name = name;
this.author = authors;
this.publisher = publisher;
this.quantity = quantity;

}

}

public class ArrayListExample { public static void main(String|[]
args) {

//Creating list of Books

List<Book> list=new ArrayList<Book>();

//Creating Books

Book bl=new Book(l01,"Let us C","Yashwant
Kanetkar","BPB",8);

Book b2=new Book(102,"Data Communications &

Networking","Forouzan","Mc Graw Hill",4);

Book b3=new Book(103,"Operating
System","Galvin","Wiley",6);

//Adding Books to list list.add(b); list.add(b2); list.add(b3);
//Traversing list for(Book b:list){

System.out.printin(b.id+" "+b.name+" "+b.author+"
"+b.publisher+" "+b.quantity);
}

}
}

Java String

Java String

Java String

In , string is basically an object that
represents sequence of char values.

An of characters works same as Java
string. For example:

Char[] Ch={'j"'a"'V"'a"'t"'P"'O"'i"'n"'t'};
String s=new String(ch);
String s="javatpoint";

https://www.javatpoint.com/java-tutorial
https://www.javatpoint.com/array-in-java

* Java String class provides a lot of methods
to perform operations on strings such as
compare(), concat(), equals(), split(), length(),
replace(), compareTo(), intern(), substring() etc

Serializable Comparable CharSequence CharSequence

p f /! 2

| implements
implements /
| \
|

\

N / !
v !
String String StringBuffer StringBuilder

A
| p

Java String compare

* We can compare string in java on the basis of content
and reference.

It is used in authentication (by equals()
method), sorting (by compareTo()
method), reference matching (by == operator)
etc.

e There are three ways to compare string in java:
By equals() method

By = = operator

By compareTo() method

class Testimmutablestring{
public static void main{String args[])}{
String s="Sachin";
s.concat(" Tendulkar");//concat() method appends the string at the end
System.out.println(s);//will print Sachin because strings are immutable objects
hy
¥

[Test it Now

OQutput:Sachin

class Testimmutablestring 14
public static wvoid man{Strnng args[])}+1
Strning s="Sachin';
s=s.concat{" Tendulkar");
System.out.printins);
¥
¥

] Test it Now

Output:Sachin Tendulkar

LRSS S S SN S SN S SN SRS SN S SN S S S S S S S S SRS S S SN S NS S S SSSS

String compare by equals() method

* The String equals() method compares the
original content of the string. It compares
values of string for equality. String class
provides two methods:

e public boolean equals(Object
another) compares this string to the
specified object.

* public boolean
equalsignoreCase(String
another) compares this String to another
string, ignoring case

class Teststnngcompansonl{

public static void main{(String argsC])}4{
String s1="Sachin";
String s2="Sachin";

String s2=nmnew Strnng{"Sachin™);

String s4="Saurawv";
System.ocout.printin{(sl.equals{s2));//true
System.out.printin{(sl.equals{s3));//true
System.ocut.printin(sl.equals{s%));//false

L Test it Now

Qutput:trus
trues

fal=ss

class Teststringcomparnsonz2{

public static void main{(String args[]){
String s1="Sachin";
String s2="SACHIN";

System.out.printin(si.equals{s2));//false
System.out.printin(sl.equalsIgnoreCase(s2});//true
ky
¥

| Test it Now

Output:

false

trus

2) String compare by == operator

% \ The = = operator compares references not values.
class Teststringcomparison3q
public static void main{String args[])}{
String s1="Sachin";
String s2="Sachin";
String s3=new String({"Sachin");
System.out.printin(s1==s2);//true (because both refer to same instance)

System.out.printin(s1==s3);//false(because 53 refers to instance created in nonpool)

¥
¥

| Test it Now

Output:true
false

String compare by compareTo()
method

e The String compareTo() method
compares values lexicographically and
returns an integer value that describes if
first string is less than, equal to or greater
than second string.

» Suppose sl and s2 are two string
variables. If:

esl ==s2:0
sl >s2 :positive value
sl <s2 :negative value

/

class Teststringcomparison4{
public static void main(String args[])4{
String s1="Sachin";

String s2="Sachin";

String s2="Ratan";
System.out.printin({sl.compareTo(s2)});//0
System.out.printin({sl.compareTo(s3));//1(because s1>=53)
System.out.printin({s3.compareTo(sl1));//-1(because s3 < 51)

Output:e

1) String Concatenation by + (string concatenation) operator

> Java string concatenation operator (+) is used to add strings. For Example:

class TestStringConcatenation1{

public static void main(String args[]){
String s="Sachin"+" Tendulkar";
System.out.println(s);//Sachin Tendulkar

]

]

|| Test it Now

Qutput:Sachin Tendulkar

2) String Concatenation by concat() method

The String concat{) method concatenates the specified string to the end of current string. Syntax:

public String concat(String another)

Let's see the example of String concat() method.

class TestStringConcatenation3{

public static void main(String args[]){
String s1="Sachin ";
String s2="Tendulkar";
String s3=s1.concat(s2);
System.out.printin(s3);//Sachin Tendulkar
¥

¥

| Test it Now

Sachin Tendulkar

Substring in Java

o A part of string is called substring. In other words,
substring is a subset of another string. In case of
substring startlndex is inclusive and endIndex is
exclusive.

e public String substring(int startindex): This
method returns new String object containing the
substring of the given string from specified startlndex
(inclusive).

e public String substring(int startlndex, int
endIndex): This method returns new String object
containing the substring of the given string from
specified startindex to endlndex

o startlndex: inclusive
e endIndex: exclusive

=xample of java substring

public class TestSubstring{

public static void main{String args[]){
String s="SachinTendulkar";
System.out.printin(s.substring(6));//Tendulkar
System.out.printin(s.substring(0,6));//5achin

¥
¥

| Test it Now

Tendulkar

sachin

e

-

Ve

/[
~ Java String toUpperCase() and toLowerCase() method

"/ The Java string toUpperCase() method converts this string into uppercase letter and stri

7 letter.

String s="Sachin";
System.out.printin(s.toUpperCase());//SACHIN
System.out.printin(s.toLowerCase());//sachin

System.out.printin(s);//Sachin(no change in original)

[Test it Now

S5ACHIN

sachin

Sachin

Java Siring length() method

The strimg length{)} method returms length of the string.

String s="Sachim";

Syostem.out.printins. length{));/ /G

[Test it Now

Java String replace() method

The string replace() method replaces all occurrence of first sequence of character with second sequence of character.

String s1="Java is a programming language. Java is a platform. Java is an Island.”;
String replaceString=s1.replace("Java","Kava");//replaces all occurrences of "Java" to "Kava"

System.out.printin{replaceString);

Output:

Kava is a programming language. Kava is a platform. Kava is an Island.

* Output:
e |0l Let us C Yashwant Kanetkar BPB 8
e 102 Data Communications & Networking

Forouzan Mc Graw Hill 4 103 Operating
System Galvin Wiley 6

