
Unit – III

Exception Handling and I/O

Exceptions-exception hierarchy-throwing and catching exceptions-built-in

exceptions, creating own exceptions, Stack Trace Elements. Input /Output

Basics-Streams-Byte streams and character streams-Reading and Writing

Console-Reading and Writing Files Templates

Difference between error and exception

Errors indicate serious problems and abnormal conditions that most

applicationsshould not try to handle. Error defines problems that are not

expected to be caught under normal circumstances by our program. For

example memory error, hardware error, JVM error etc.

Exceptions are conditions within the code. A developer can handle such

conditionsand take necessary corrective actions. Few examples

 DivideByZero exception

 NullPointerException

 ArithmeticException

 ArrayIndexOutOfBoundsException

o An exception (or exceptional event) is a problem that arises during the

execution of a program.

o When an Exception occurs the normal flow of the program is disrupted

and the program/Application terminates abnormally, which is not

recommended, therefore, these exceptions are to be handled.

o If an exception is raised, which has not been handled by programmer

then program execution can get terminated and system prints a non user

friendly error message.

Ex: Exception in thread "main"

java.lang.ArithmeticException: / by zero at

ExceptionDemo.main(ExceptionDemo.java:5)

Where, ExceptionDemo : The class name

main : The method name

ExceptionDemo.java : The filename

java:5 : Line number

An exception can occur for many different reasons. Following are some

scenarios where an exception occurs.

 A user has entered an invalid data.

 A file that needs to be opened cannot be found.

 A network connection has been lost in the middle of communications or

the JVM hasrun out of memory.

Exception Hierarchy

All exception classes are subtypes of the java.lang.Exception class. The

exception class is a subclass of the Throwable class.

Key words used in Exception handling

There are 5 keywords used in java exception handling.

1. try

A try/catch block is placed around the code that might generate an

exception. Code within a try/catch block is referred to as protected code.

2. catch

A catch statement involves declaring the type of exception we are trying

to catch.

3. finally

A finally block of code always executes, irrespective of occurrence of an

Exception.

4. throw

It is used to execute important code such as closing connection, stream

etc. throw is used to invoke an exception explicitly.

5. throws throws is used to postpone the handling of a checked exception.

Syntax : //Example-predefined Excetion - for

try //ArrayindexoutofBounds Exception

{ public class ExcepTest

//Protected code {

} public static void main(String args[])

catch(ExceptionType1 e1)

{ int a[] = new int[2];

try

{

{ System.out.println("Access element three :" +

a[3]);

//Catch block }

} catch(ArrayIndexOutOfBoundsException e)

catch(ExceptionType2 e2) { System.out.println("Exception thrown :" + e);

{ }

//Catch block finally

} { a[0] = 6;

catch(ExceptionType3 e3) System.out.println("First element value: " + a[0]);

{

System.out.println("The finally statement is

executed");

//Catch block }

} }

finally }

{ Output

//The finally block always

Exception thrown

:java.lang.ArrayIndexOutOfBoundsException:3

executes. First element value: 6

} The finally statement is executed

Note : here array size is 2 but we are trying to access

3rdelement.

Uncaught Exceptions

This small program includes an expression that intentionally causes a divide-by-

zero error: class Exc0 { public static void main(String args[]) { int d = 0; int a =

42 / d; } } When the Java run-time system detects the attempt to divide by zero,

it constructs a new exception object and then throws this exception. This causes

the execution of Exc0 to stop, because once an exception has been thrown, it

must be caught by an exception handler and dealt with immediately

Any exception that is not caught by your program will ultimately be processed

by the default handler. The default handler displays a string describing the

exception, prints a stack trace from the point at which the exception occurred,

and terminates the program. Here is the exception generated when this example

is executed:

java.lang.ArithmeticException: / by zero at Exc0.main(Exc0.java:4)

Stack Trace:

Stack Trace is a list of method calls from the point when the application was

started to the point where the exception was thrown. The most recent method

calls are at the top. A stacktrace is a very helpful debugging tool. It is a list of

the method calls that the application was in the middle of when an Exception

was thrown. This is very useful because it doesn't only show you where

the error happened, but also how the program ended up in that place of the

code.

Using try and Catch

To guard against and handle a run-time error, simply enclose the code that you

want to monitor inside a try block. Immediately following the try block, include

a catch clause that specifies the exception type that you wish to catch. A try and

its catch statement form a unit. The the following program includes a try block

and a catch clause that processes the ArithmeticException generated by the

division-by-zero error:

class Exc2 {

public static void main(String args[]) {

int d, a;

try { // monitor a block of code.

d = 0;

a = 42 / d;

System.out.println("This will not be printed.");

} catch (ArithmeticException e) { // catch divide-by-zero error

System.out.println("Division by zero.");

}

System.out.println("After catch statement.");

}

}

This program generates the following output:

Division by zero.

After catch statement.

The call to println() inside the try block is never executed. Once an exception is

thrown, program control transfers out of the try block into the catch block.

Multiple catch Clauses

In some cases, more than one exception could be raised by a single piece of

code. To handle this type of situation, you can specify two or more catch

clauses, each catching a different type of exception. When an exception is

thrown, each catch statement is inspected in order, and the first one whose type

matches that of the exception is executed. After one catch statement executes,

the others are bypassed, and execution continues after the try/catch block.

The following example traps two different exception types:

// Demonstrate multiple catch statements.

class MultiCatch {

public static void main(String args[]) {

try {

int a = args.length;

System.out.println("a = " + a);

int b = 42 / a;

int c[] = { 1 };

c[42] = 99;

} catch(ArithmeticException e) {

System.out.println("Divide by 0: " + e);

} catch(ArrayIndexOutOfBoundsException e) {

System.out.println("Array index oob: " + e);

}

System.out.println("After try/catch blocks.");

}

}

Here is the output generated by running it both ways:

C:\>java MultiCatch

a = 0

Divide by 0: java.lang.ArithmeticException: / by zero

After try/catch blocks.

C:\>java MultiCatch TestArg

a = 1

Array index oob: java.lang.ArrayIndexOutOfBoundsException:42

After try/catch blocks.

Nested try Statements

The try statement can be nested. That is, a try statement can be inside the block

of another try. Each time a try statement is entered, the context of that exception

is pushed on the stack. If an inner try statement does not have a catch handler

for a particular exception, the stack is unwound and the next try statement’s

catch handlers are inspected for a match. This continues until one of the catch

statements succeeds, or until all of the nested try statements are exhausted. If no

catch statement matches, then the Java run-time system will handle the

exception.

// An example of nested try statements.

class NestTry {

public static void main(String args[]) {

try {

int a = args.length;

/* If no command-line args are present,

the following statement will generate

a divide-by-zero exception. */

int b = 42 / a;

System.out.println("a = " + a);

try { // nested try block

/* If one command-line arg is used,

then a divide-by-zero exception

will be generated by the following code. */

if(a==1) a = a/(a-a); // division by zero

/* If two command-line args are used,

then generate an out-of-bounds exception. */

if(a==2) {

int c[] = { 1 };

c[42] = 99; // generate an out-of-bounds exception

}

} catch(ArrayIndexOutOfBoundsException e) {

System.out.println("Array index out-of-bounds: " + e);

}

} catch(ArithmeticException e) {

System.out.println("Divide by 0: " + e);

}

}

}

C:\>java NestTry

Divide by 0: java.lang.ArithmeticException: / by zero

C:\>java NestTry One

a = 1

Divide by 0: java.lang.ArithmeticException: / by zero

C:\>java NestTry One Two

a = 2

Array index out-of-bounds:

java.lang.ArrayIndexOutOfBoundsException:42

throw

it is possible for your program to throw an exception explicitly, using the throw

statement. The general form of throw is shown here:

throw ThrowableInstance;

Here, ThrowableInstance must be an object of type Throwable or a subclass of

Throwable.

Primitive types, such as int or char, as well as non-Throwable classes, such as

String and

Object, cannot be used as exceptions. There are two ways you can obtain a

Throwable object: using a parameter in a catch clause, or creating one with the

new operator.

The flow of execution stops immediately after the throw statement; any

subsequent statements are not executed. The nearest enclosing try block is

inspected to see if it has a catch statement that matches the type of exception. If

it does find a match, control is transferred to that statement. If not, then the next

enclosing try statement is inspected, and so on. If no matching catch is found,

then the default exception handler halts the program and prints the stack trace

// Demonstrate throw.

class ThrowDemo {

static void demoproc() {

try {

throw new NullPointerException("demo");

} catch(NullPointerException e) {

System.out.println("Caught inside demoproc.");

throw e; // rethrow the exception

}

}

public static void main(String args[]) {

try {

demoproc();

} catch(NullPointerException e) {

System.out.println("Recaught: " + e);

}

}

}

Here is the resulting output:

Caught inside demoproc.

Recaught: java.lang.NullPointerException: demo

Throws

If a method is capable of causing an exception that it does not handle, it must

specify this behaviour so that callers of the method can guard themselves

against that exception. You do this by including a throws clause in the method’s

declaration. A throws clause lists the types of exceptions that a method might

throw. This is necessary for all exceptions, except those of type Error or

RuntimeException, or any of their subclasses. All other exceptions that a

method can throw must be declared in the throws clause. This is the general

form of a method declaration that includes a throws clause:

type method-name(parameter-list) throws exception-list

{

// body of method

}

Here, exception-list is a comma-separated list of the exceptions that a method

can throw.

class ThrowsDemo {

static void throwOne() throws IllegalAccessException {

System.out.println("Inside throwOne.");

throw new IllegalAccessException("demo");

}

public static void main(String args[]) {

try {

throwOne();

} catch (IllegalAccessException e) {

System.out.println("Caught " + e);

}

}

}

Here is the output generated by running this example program:

inside throwOne

caught java.lang.IllegalAccessException: demo

finally

The finally keyword is designed to address this contingency. finally creates a

block of code that will be executed after a try/catch block has completed and

before the code following the try/catch block. The finally block will execute

whether or not an exception is thrown. If an exception is thrown, the finally

block will execute even if no catch statement matches the exception. Any time a

method is about to return to the caller from inside a try/catch block, via an

uncaught exception or an explicit return statement, the finally clause is also

executed just before the method returns. This can be useful for closing file

handles and freeing up any other resources that might have been allocated at the

beginning of a method with the intent of disposing of them before returning.

The finally clause is optional.

// Demonstrate finally.

class FinallyDemo {

// Through an exception out of the method.

static void procA() {

try {

System.out.println("inside procA");

throw new RuntimeException("demo");

} finally {

System.out.println("procA's finally");

}

}

// Return from within a try block.

static void procB() {

try {

System.out.println("inside procB");

return;

} finally {

System.out.println("procB's finally");

}

}

// Execute a try block normally.

static void procC() {

try {

System.out.println("inside procC");

} finally {

System.out.println("procC's finally");

}

}

public static void main(String args[]) {

try {

procA();

} catch (Exception e) {

System.out.println("Exception caught");

}

procB();

procC();

}

}

Here is the output generated by the preceding program:

inside procA

procA’s finally

Exception caught

inside procB

procB’s finally

inside procC

procC’s finally

Categories of Exceptions

Checked exceptions −A checked exception is an exception that occurs

at the compiletime, these are also called as compile time exceptions.

These exceptions cannot simply be ignored at the time of compilation,

the programmer should take care of (handle) these exceptions.

Unchecked exceptions − An unchecked exception is an exception that

occurs at thetime of execution. These are also called as Runtime

Exceptions. These include programming bugs, such as logic errors or

improper use of an API. Runtime exceptions are ignored at the time of

compilation.

Common scenarios where exceptions may occur:

There are given some scenarios where unchecked exceptions can occur.

They are as follows:

1) Scenario where ArithmeticException occurs

If we divide any number by zero, there occurs an ArithmeticException.

int a=50/0;//ArithmeticException

2) Scenario where NullPointerException occurs

If we have null value in any variable, performing any operation by the

variable occurs an NullPointerException.

String s=null;

System.out.println(s.length());//NullPointerException

3) Scenario where ArrayIndexOutOfBoundsException occurs

If you are inserting any value in the wrong index, it would result

ArrayIndexOutOfBoundsException as shown below:

int a[]=new int[5];

a[10]=50; //ArrayIndexOutOfBoundsException

Java’s Built-in Exceptions

User-defined Exceptions

All exceptions must be a child of Throwable.

If we want to write a checked exception that is automatically enforced by

the Handle ,we need to extend the Exception class.

User defined exception needs to inherit (extends) Exception class in

order to act as an exception.

 throw keyword is used to throw such exceptions.

class MyOwnException extends Exception

{ public

MyOwnException(String

msg) { super(msg);

}

}

class EmployeeTest

{

static void employeeAge(int age) throws

MyOwnException {

if(age < 0)

throw new MyOwnException("Age can't be less

than zero"); else

System.out.println("Input is valid!!");

}

public static void main(String[] args)

{

try { employeeAge(-2);

}

catch (MyOwnException e)

{

e.printStackTrace();

}

}

}

Advantages of Exception Handling

Exception handling allows us to control the normal flow of the program

by using exception handling in program.

It throws an exception whenever a calling method encounters an error

providing that the calling method takes care of that error.

It also gives us the scope of organizing and differentiating between

different error types using a separate block of codes. This is done with the

help of try-catch blocks.

 IO IN JAVA

Java I/O (Input and Output) is used to process the input and produce

the output based on the input. Java uses the concept of stream to make

I/O operation fast. The java.io package contains all the classes

required for input and output operations.

Stream

A stream can be defined as a sequence of data. there are two kinds of Streams

 InputStream: The InputStream is used to read data from a source.

 OutputStream: the OutputStream is used for writing data to a

destination.

Byte Streams

Java byte streams are used to perform input and output of 8-bit bytes

FileInputStream , FileOutputStream.

Character Streams

Java Character streams are used to perform input and output for 16-bit unicode.

FileReader , FileWriter

Standard Streams

 Standard Input: This is used to feed the data to user's program and

usually a keyboard is used as standard input stream and represented as

System.in.

 Standard Output: This is used to output the data produced by the

user's program and usually a computer screen is used to standard

output stream and represented as System.out.

 Standard Error: This is used to output the error data produced by the

user's program and usually a computer screen is used to standard error

stream and represented as System.err.

Classification of Stream Classes:

Byte Stream Classes:

ByteStream classes have been designed to provide functional features for

creating and manipulating streams and files for reading and writing bytes. Since

the streams are unidirectional, they can transmit bytes in only one direction and

therefore, Java provides two kinds of byte stream classes: InputStream class and

OutputStream class.

Input Stream Classes

 Input stream classes that are used to read 8-bit bytes include a super class

known as InputStream and number of subclasses for supporting various input-

related functions.

Hierarchy of Input Stream Classes

The super class InputStream is an abstract class, so we cannot create object for

the class. InputStream class defines the methods to perform the following

functions:-

 Reading Bytes

 Closing Streams

 Marking position in Streams

 Skipping ahead in streams

 Finding the number of bytes in stream.

The following are the InputStream methods:

The DataInput interface contains the following methods

OutputStream Class

The super class InputStream is an abstract class, so we cannot create object for

the class. InputStream class defines the methods to perform the following

functions:

 Writing Bytes

 Closing Streams

 Flushing Streams

Hierarchy of OutputStream Classes

OutputStream Methods

Character Stream Vs Byte Stream in Java

I/O Stream

A stream is a method to sequentially access a file. I/O Stream means an input

source or output destination representing different types of sources e.g. disk

files.The java.io package provides classes that allow you to convert between

Unicode character streams and byte streams of non-Unicode text.

Stream: A sequence of data.

Input Stream: reads data from source.

Output Stream: writes data to destination.

Character Stream

In Java, characters are stored using Unicode conventions (Refer this for details).

Character stream automatically allows us to read/write data character by

character. For example FileReader and FileWriter are character streams used to

read from source andwrite to destination.

// Java Program illustrating that we can read a file in

// a human readable format using FileReader

importjava.io.*; // Accessing FileReader, FileWriter, IOException

publicclassGfG

{

 publicstaticvoidmain(String[] args) throwsIOException

 {

 FileReader sourceStream = null;

 try

 {

 sourceStream = newFileReader("test.txt");

https://docs.oracle.com/javase/tutorial/java/data/characters.html

 // Reading sourcefile and writing content to

 // target file character by character.

 inttemp;

 while((temp = sourceStream.read()) != -1)

 System.out.println((char)temp);

 }

 finally

 {

 // Closing stream as no longer in use

 if(sourceStream != null)

 sourceStream.close();

 }

 }

}

Reading and Writing Files:

A stream can be defined as a sequence of data. The InputStream is used to read

data from a source and the OutputStream is used for writing data to a

destination.

TheInputStream is used to read data from a source and the OutputStream is

used for writing data to a destination.The two important streams

are FileInputStream and FileOutputStream

Here is a hierarchy of classes to deal with Input and Output streams.

FileInputStream

This stream is used for reading data from the files. Objects can be created using

the keyword new and there are several types of constructors available.

Following constructor takes a file name as a string to create an input stream

object to read the file –

InputStream f = new FileInputStream("C:/java/hello");

Following constructor takes a file object to create an input stream object to

read the file. First we create a file object using File() method as follows −

File f = new File("C:/java/hello");

InputStream f = new FileInputStream(f);

Once you have InputStream object in hand, then there is a list of helper

methods which can be used to read to stream or to do other operations on the

stream.

Example:

import

java.io.*;

class C{

public static void main(String args[])throws

Exception{ FileInputStream fin=new

FileInputStream("C.java"); FileOutputStream

fout=new FileOutputStream("M.java"); int i=0;

while((i=fin.read())!=-

1){ fout.write((byte)i);

}

fin.close();

}

}

Byte Stream

Byte streams process data byte by byte (8 bits). For example FileInputStream is

used to read from source and FileOutputStream to write to the destination.

// Java Program illustrating the Byte Stream to copy

// contents of one file to another file.

importjava.io.*;

publicclassBStream

{

 Public static void main(String[] args) throws IOException

 {

 FileInputStream sourceStream = null;

 FileOutputStream targetStream = null;

 try

 {

 sourceStream = newFileInputStream("sorcefile.txt");

 targetStream = newFileOutputStream ("targetfile.txt");

 // Reading source file and writing content to target

 // file byte by byte

 inttemp;

 while((temp = sourceStream.read()) != -1)

 targetStream.write((byte)temp);

 }

 finally

 {

 if(sourceStream != null)

 sourceStream.close();

 if(targetStream != null)

 targetStream.close();

 }

 }

}

Final Keyword In Java – Final variable, Method and Class

final keyword can be used along with variables, methods and classes.

1) final variable

2) final method

3) final class

1) final variable

final variables are nothing but constants. We cannot change the value of a final

variable once it is initialized. Lets have a look at the below code:

classDemo{

finalint MAX_VALUE=99;

void myMethod(){

 MAX_VALUE=101;

}

Public static void main(String args[]){

Demo obj=newDemo();

 obj.myMethod();

}

}

Exception in thread "main" java.lang.Error: Unresolved compilation problem:

 The final field Demo.MAX_VALUE cannot be assigned

 at beginnersbook.com.Demo.myMethod(Details.java:6)

 at beginnersbook.com.Demo.main(Details.java:10)

We got a compilation error in the above program because we tried to change the

value of a final variable “MAX_VALUE”.

2) final method

A final method cannot be overridden. Which means even though a sub class can

call the final method of parent class without any issues but it cannot override it.

Example:

class XYZ{

finalvoid demo(){

System.out.println("XYZ Class Method");

}

}

class ABC extends XYZ{

void demo(){

System.out.println("ABC Class Method");

}

public static void main(String args[]){

 ABC obj=new ABC();

 obj.demo();

}

}

The above program would throw a compilation error, however we can use the

parent class final method in sub class without any issues. Lets have a look at

this code: This program would run fine as we are not overriding the final

method. That shows that final methods are inherited but they are not eligible for

overriding.

class XYZ{

finalvoid demo(){

System.out.println("XYZ Class Method");

}

}

class ABC extends XYZ{

public static void main(String args[]){

 ABC obj=new ABC();

 obj.demo();

}

}

https://beginnersbook.com/2014/01/method-overriding-in-java-with-example/
https://beginnersbook.com/2013/05/java-inheritance-types/

Output:

XYZ ClassMethod

3) final class

We cannot extend a final class. Consider the below example:

finalclass XYZ{

}

class ABC extends XYZ{

void demo(){

System.out.println("My Method");

}

Public static void main(String args[]){

 ABC obj=new ABC();

 obj.demo();

}

}

Output:

The type ABC cannot subclass the final class XYZ

	Character Stream Vs Byte Stream in Java
	FileInputStream

	Final Keyword In Java – Final variable, Method and Class
	2) final method
	3) final class

