

CS8501

THEORY OF COMPUTATION

by, C.Kalpana, M.E(CSE) Assistant Professor, Department of Computer Science and Engineering, NPR College of Engineering & Technology

Syllabus

UNIT V UNDECIDABILITY

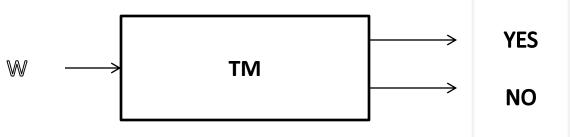
Non Recursive Enumerable (RE) Language – Undecidable Problem with RE – Undecidable Problem about TM – Post's Correspondence Problem – The Class P and NP.

Turing Machine Problems -> Algorithm -> Only solved by TM

TM – Halts ->(Accept / Rejects) Run forever -> Input do not accept.

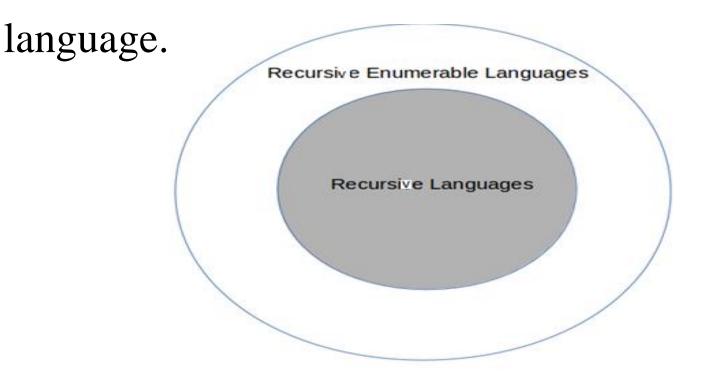
Recursive Language

A language is said to be **recursive** if there exists a Turing Machine that **accepts** every string of the language and **rejects the string** that are **not in the language.**



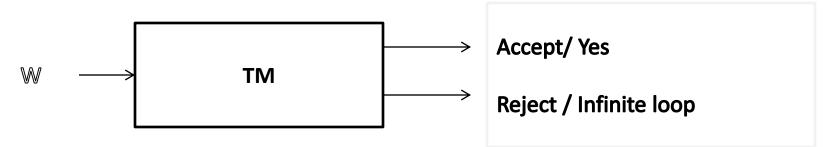
Recursively Enumerable Language

A language defined by **phrase structure grammar** is known as Recursively Enumerable



Recursively Enumerable Language

A language is said to be **recursively enumerable** if there exists a Turing Machine that **accepts** every string of the language and **rejects the string** that are **not in the language** and it may cause TM to enter into an **infinite loop**.



Properties of Recursive & RE Languages

Complement

$W \rightarrow M - Yes \rightarrow No$

No \rightarrow Yes

Properties of Recursive & RE Languages

- 2 Classes
- First Class
- TM decides whether the input string belongs to that language or not.
- It halts, whether or not it reaches the accepting state.

Properties of Recursive & RE Languages

- 2 Classes
- <u>Second Class</u>
- It consists of RE languages that are not accepted by TM with the guarantee of Halting.

Language that is not recursively enumerable

Aim – To prove the undecidable language consists of pairs (M,W) such that

Ex:-

- i) M is a TM with input alphabets { 0, 1}
- ii) W is a string of o's and 1's.

Decidable Problems

A Problem whose **language is recursive** is said to be **decidable** otherwise it is not decidable.

Ex:-

The set of strings of equal no. of o's and 1's. 0011,011010

Undecidable Problems

A Problem is said to be **undecidable** if there is no algorithm and we cannot predict the input is accepted by TM or not.

No algorithm exists to solve a problem in finite time. Ex:-

Does the TM halt on input w is an undecidable problem.

If L is recursive then L' is also a recursive language.

Proof

Language L can be accepted by TM

L=L(M)

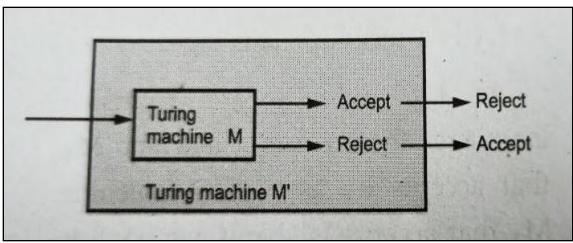
L'=(M')

• Steps

Accepting states and Non accepting states of M'

- Create new accepting states of M'
- Make same combination of accepting states and

input tape symbol for Machine M and M'

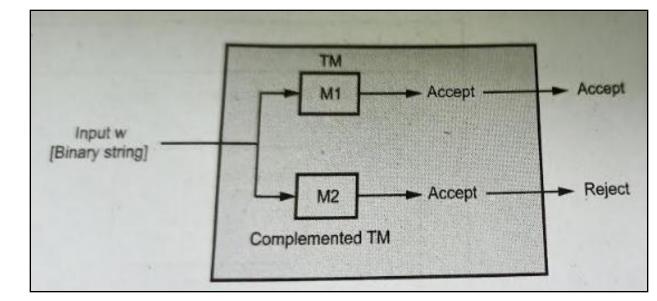


C.KALPANA AP/CSE ,NPRCET

If a language L and its complement L' both are RE then

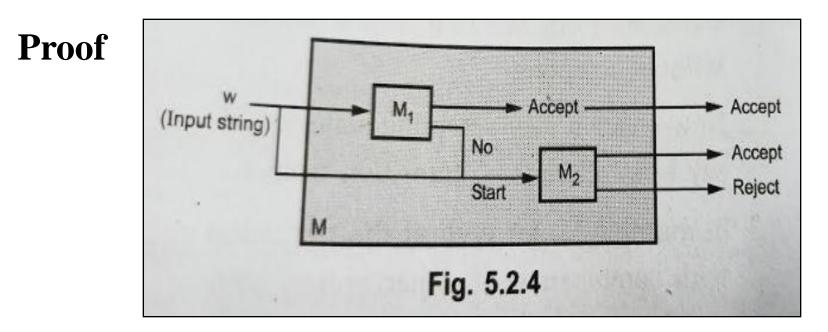
L is recursive Language.

Proof



Show that if L1 and L2 are recursive languages then

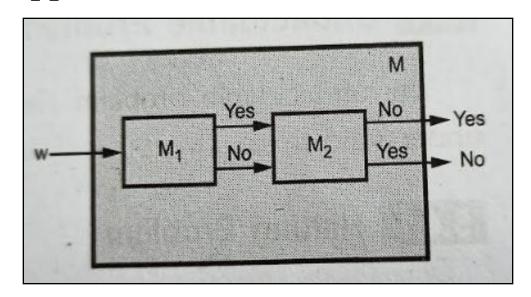
L1 U L2 also recursive.



C.KALPANA AP/CSE ,NPRCET

If L1 and L2 are two recursive languages and if L is defined as L={w or w is L1 not in L2 and not in L1}. Prove or disapprove that L is recursive.

Proof



C.KALPANA AP/CSE ,NPRCET

Show that the set of languages L over {0,1} so that neither L nor L' is recursively enumerable in uncountable.

Proof

 If L is recursively enumerable then there exists a TM Which accepts / halts / loops forever.

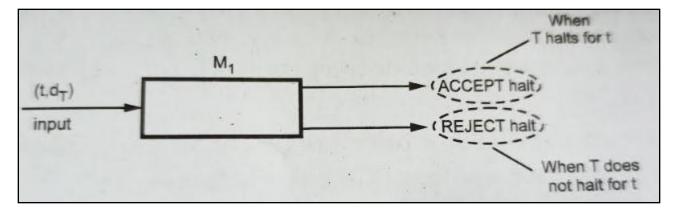
2. TM has finite length.

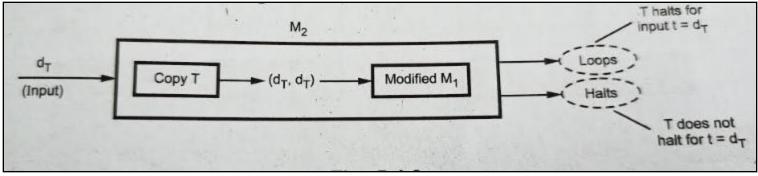
Undecidable Problem about TM

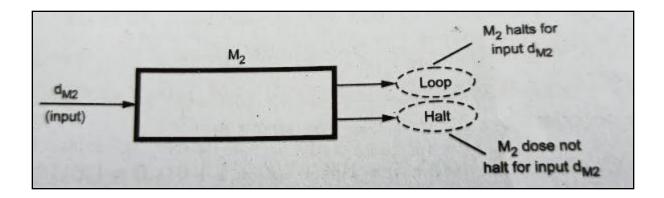
Halting Problem

- Halt (Halt after finite number of states)

- No Halt (Never reaches the halt state, No matter how long it runs)
- Unsolvable
- Prove why it is unsolvable.







C.KALPANA AP/CSE ,NPRCET

Diagonalization Language (Ld)

 L_d is the language in which the set of strings Wi such that Wi is not in L(Mi).

i.e., input is not in the language of TM. $L(M_i) = \phi$ if Wi Σ c valid code of TM.

Diagonalization

The Process of complementing the diagonal to construct the characteristic vector of a language that cannot be the language that appears in any row is called **Diagonalization**.

Ld is not Recursively Enumerable

i.e., There is a no TM that accepts Ld

 $L(M_i) = \{ W_i | M_i \text{ does not accept } W_i \}$

2 Possibilities Diagonal String = 0111 (i,j)=0 No Wi Σ L Complement = 1000 (i,j)=1 Yes Wi Σ Ld

An Undecidable Problem that is Recursively Enumerable (RE)

Statement – Recall in Slide 7,8.

Recursive Language

Relationship between Recursive , RE & Non RE languages.

Universal Languages (Lu)

Recall the Definition of Ld

 $Ld = \{ Wi | Wi \text{ does not accept } L(Mi) \}$

Universal Languages (Lu)

It is the set of strings representing a TM and an input is **accepted by** the **TM**. Therefore TM U is called as **Universal Language**.

L_u = { (**M**, w) | **M** accepts w }

Undecidable of Universal Language

 $W \rightarrow TM M - Yes \rightarrow Yes$

 $No \rightarrow No$

Undecidable Problems about TM

- Reductions
- Turing Machine that Accept the Empty Language

 $Le = \{ M \mid L(M) = \phi \}$

Lne = { $M | L(M) \neq \phi$ }

Rice Theorem & Properties of RE Languages

Trivial Property

A Property is trivial if it is either empty such that if it is satisfied by **no language (or) all RE language**. **Non Trivial Property**

A Property is said to be Non – Trivial if it is not empty.

All Nontrivial properties of the RE language are undecidable.

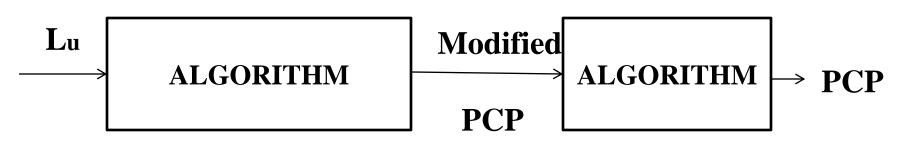
i.e., Not possible to recognize the property by a Turing Machine

- i) Context free Set of all CFL's
- **ii) Empty** Set consists of empty language.

POST CORRESPONDENCE PROBLEM (PCP)

- PCP involves strings rather than TM.
- To Prove
 - Strings to be Undecidable.
 - Use Undecidability concept to prove other

problems undecidable by reducing PCP.



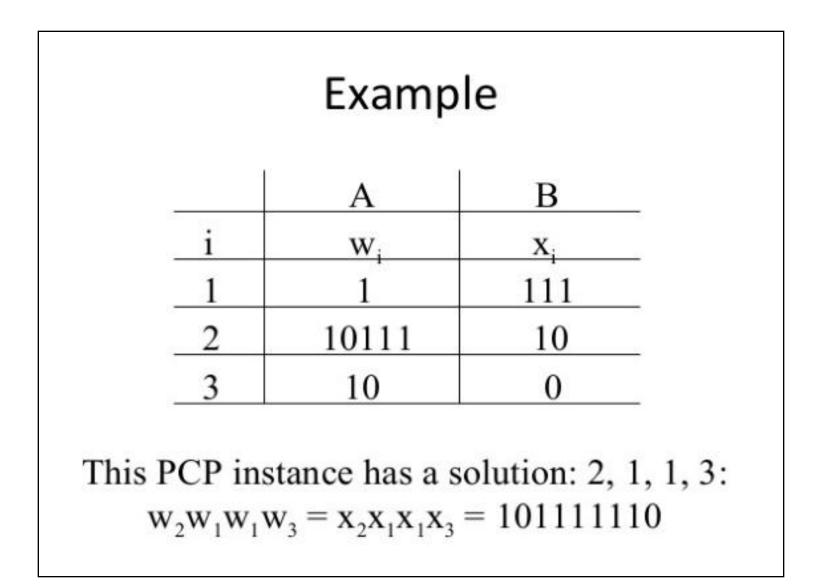
Definition - PCP

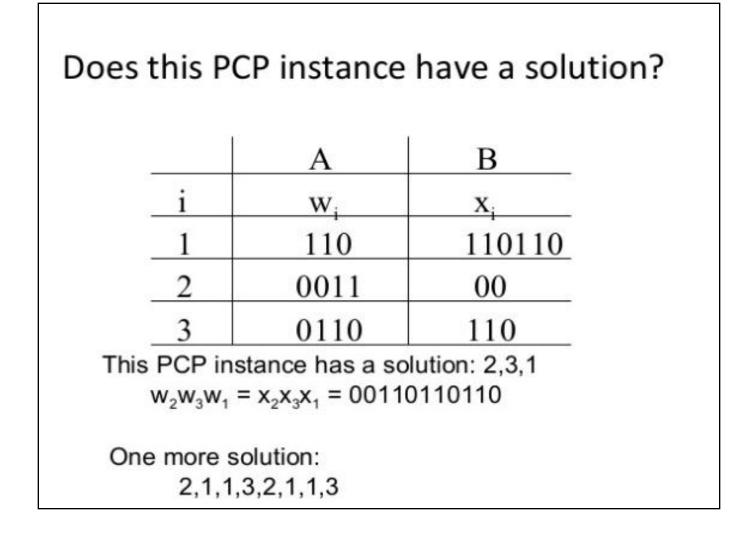
PCP consists of two lists of string over Σ . $A = w1, w2, \dots, wk$ $B = x1, x2, \dots, xk.$

For some integer k.

wi1,wi2,wi3.....wim = x1,x2....xk.

is a solution to this instance of PCP.





Modified PCP

An Intermediation (or) intermediate version of PCP is **Modified PCP.**

An instance of MPCP has two lists.

A=w1,w2.....wk.

B=x1,x2....xk.

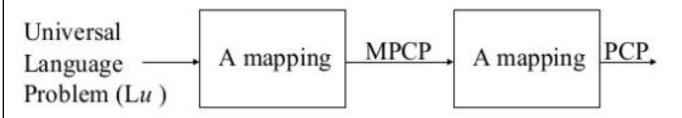
Solution

w1wi1wi2.....wm = x1xi1xi2.....xim
Where w1 x1 – Beginning of two strings

Modified Post Correspondence Problem (MPCP)		
	List A	List B
i	W	X
1	10	10
2	110	11
3	11	011
This MPCP instance has a solution: 1,2,3		
$w_1 w_2 w_3 = x_1 x_2 x_3$ 10 110 11 = 10 11 011		

Undecidability of PCP

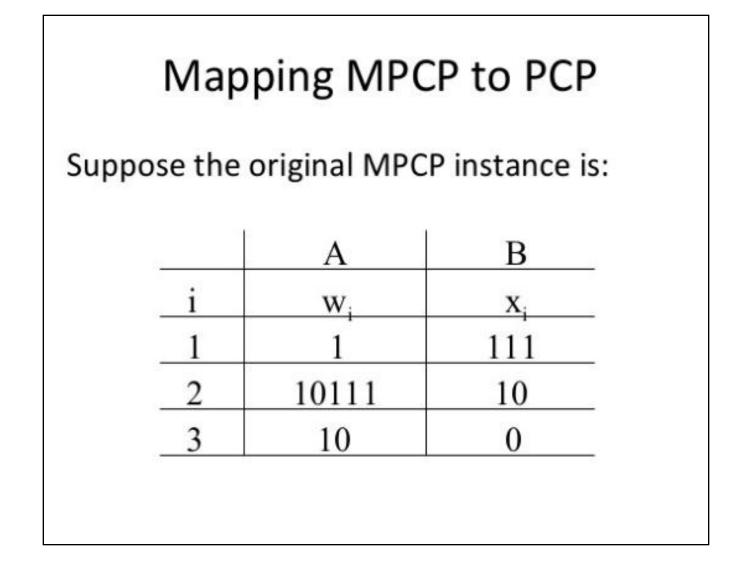
To show that PCP is undecidable, we will reduce the universal language problem (Lu) to MPCP and then to PCP:

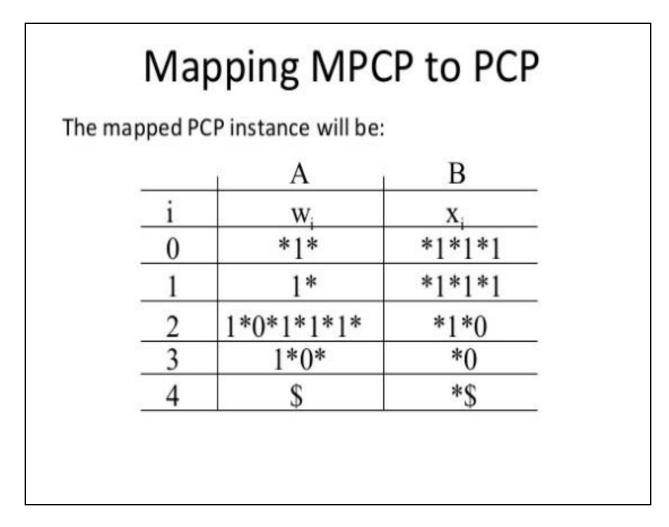


If PCP can be solved, Lu can also be solved. Lu is undecidable, so PCP must also be undecidable.

Reducing MPCP to PCP

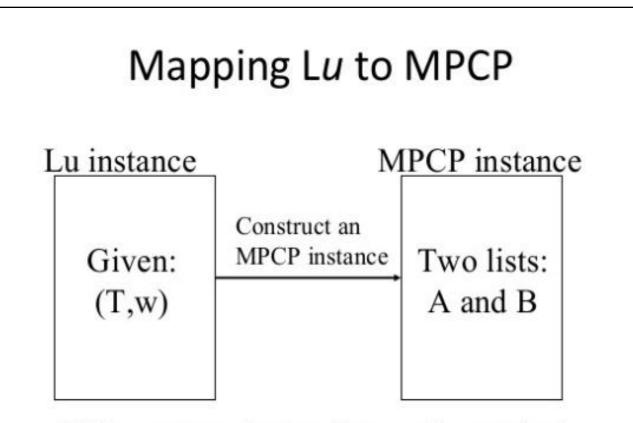
- This can be done by inserting a special symbol
 (*) to the strings in list A and B of to make
 sure that the first pair will always go first in
 any solution.
- List A : * follows the symbols of ∑
- List B : * precedes the symbols of ∑





Mapping Lu to MPCP

- Turing machine M and an input w, we want to determine if M will accept w.
- the mapped MPCP instance should have a solution if and only if M accepts w.



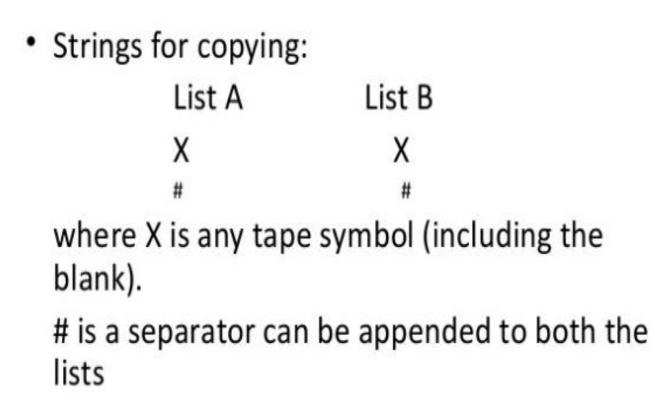
If T accepts w, the two lists can be matched. Otherwise, the two lists cannot be matched.

Rules of Reducing Lu to MPCP

- We summarize the mapping as follows. Given T and w, there are five types of strings in list A and B:
- Starting string (first pair):

List A	List B #q.w#	
#		

where q_0 is the starting state of T.



•	Strings from the transition function δ :			
	List A List B			
	qX	Yp	from $\delta(q,X)=(p,Y,R)$	
	ZqX	pZY	from $\delta(q,X)=(p,Y,L)$	
	q#	Yp#	from $\delta(q,\#)=(p,Y,R)$	
	Zq#	pZY# from δ(q,#)=(p,Y,L)		
where Z is any tape symbol except the blank.				

Ending string:

List A List B q## # where q is an accepting state.

 Using this mapping, we can show that the original Lu instance has a solution if and only if the mapped MPCP instance has a solution.

PCP is undecidable

- Theorm: Post's Correspondence Problem is undecidable.
- We have seen the reduction of MPCP to PCP
- now we see how to reduce Lu to MPCP.
 - M accepts w if and only if the constructed MPCP instance has a solution.
 - As Lu is undecidable, MPCP is also undecidable.

CLASS P & NP Problems

- Problems solved by Polynomial Time.
- Dividing line between problems.

Intractable Problems

• Problems not to be solved in polynomial time.

Example - CLASS P Problems

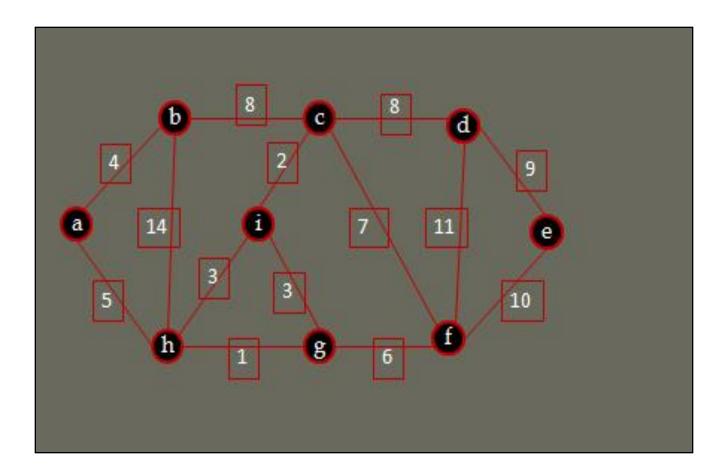
• Kruskal's Algorithm

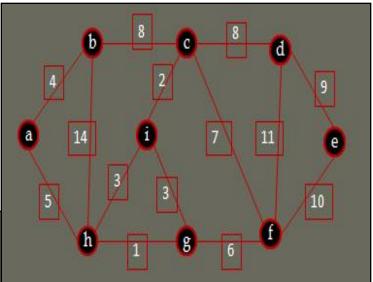
Minimum Weight Spanning Tree

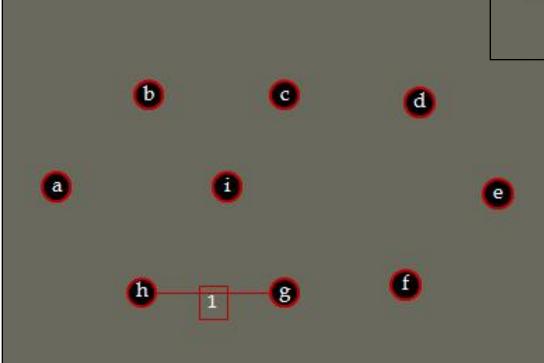
Example - CLASS NP Problems

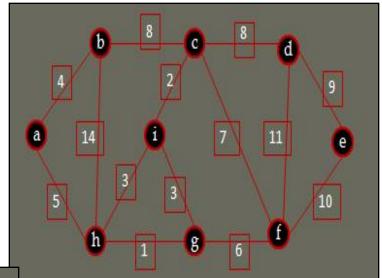
• Travelling Salesman Problem

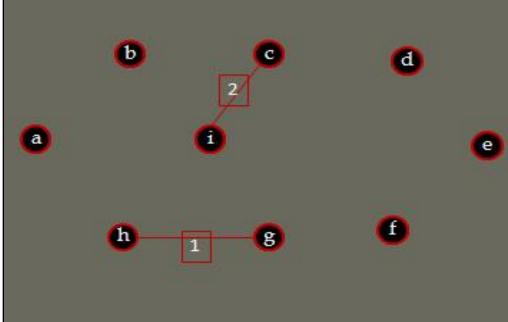
Kruskal's Algorithm

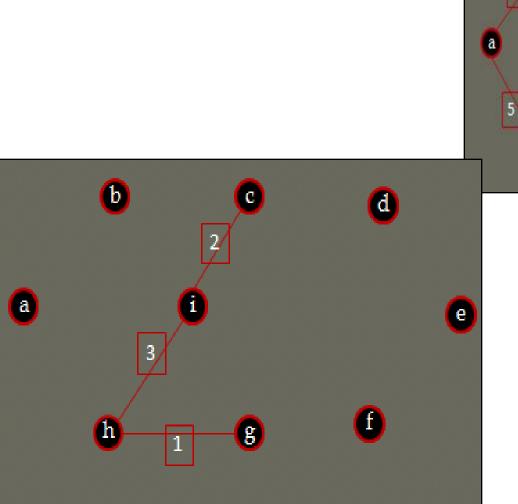


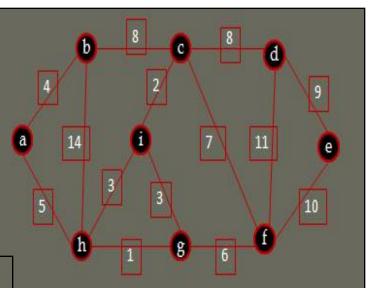




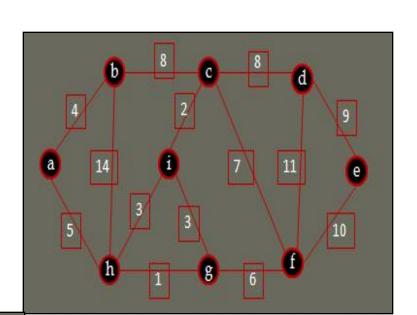


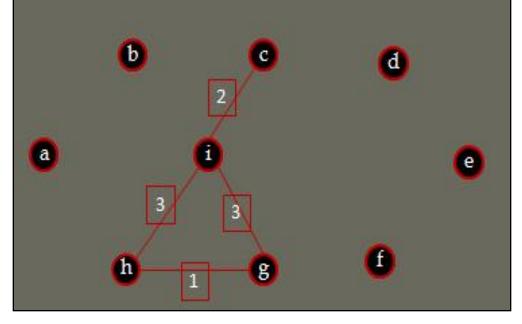


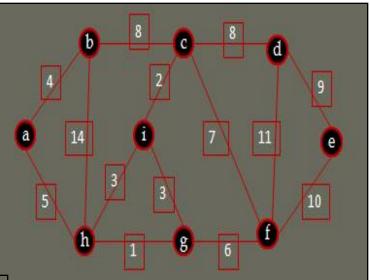


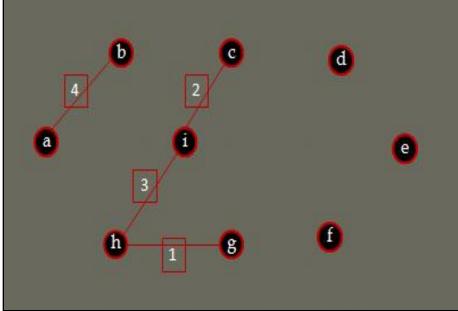


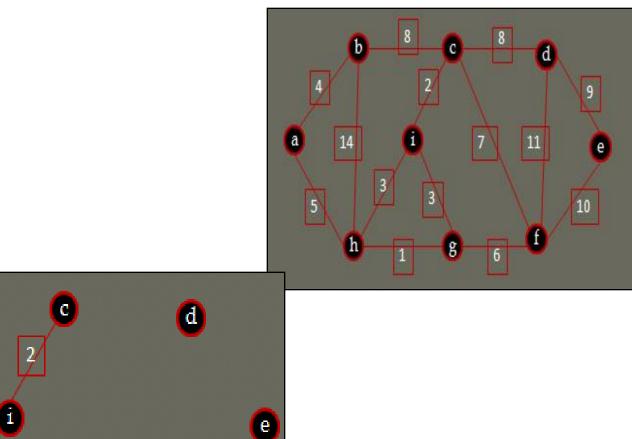
Reject (i, g)
forms a cycle

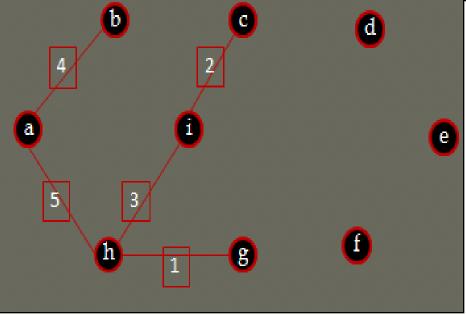


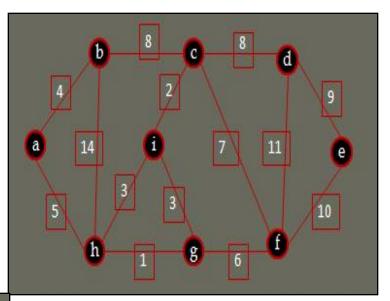


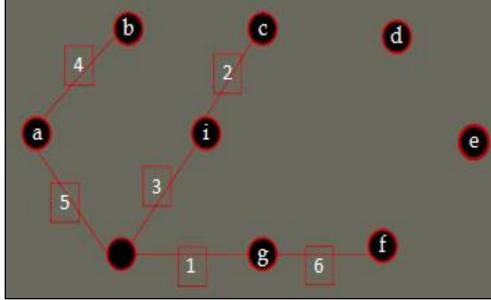




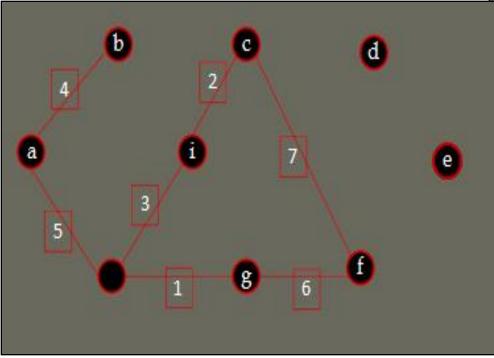


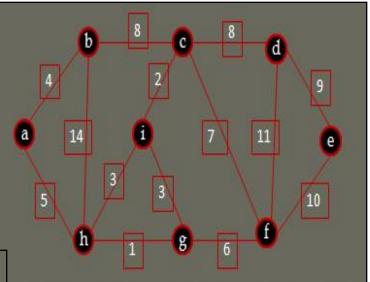


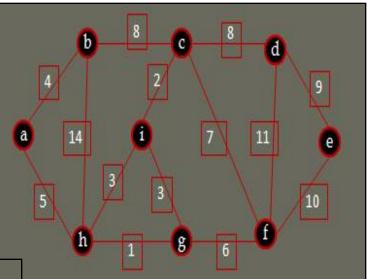


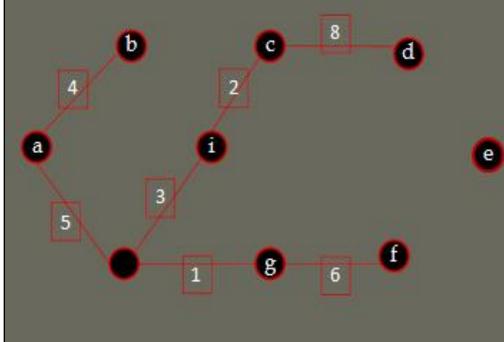


Reject (c , f)
forms a cycle

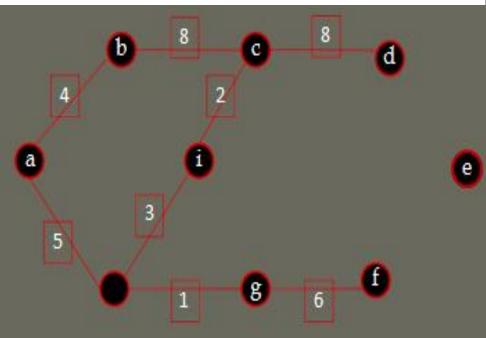


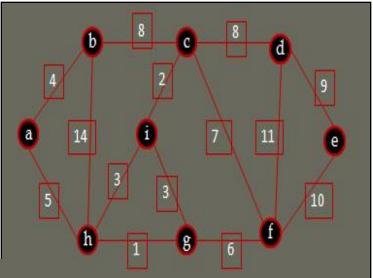


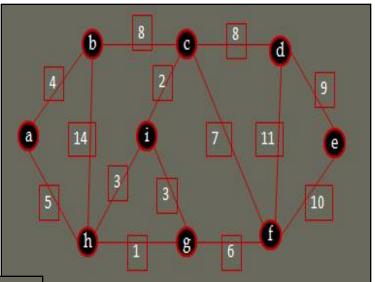


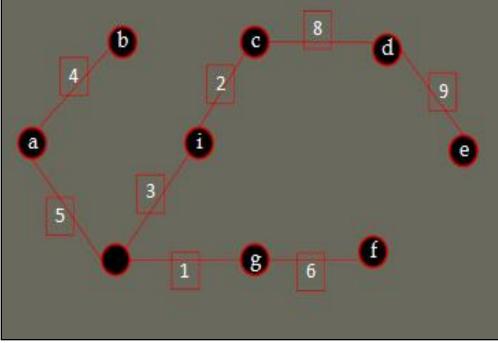


Reject (b , c)
forms a cycle

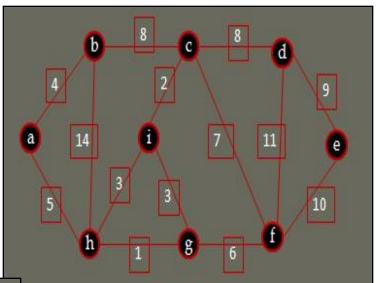


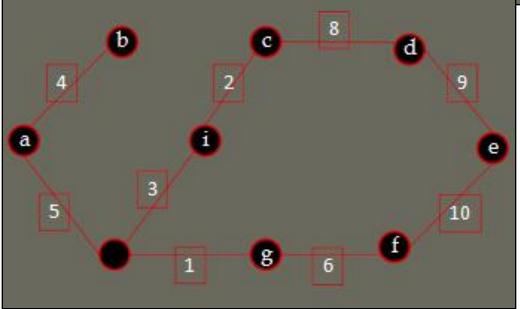




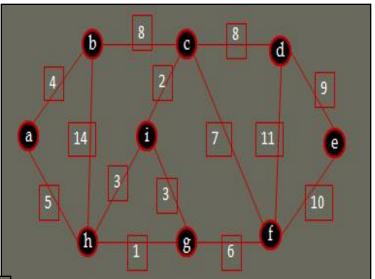


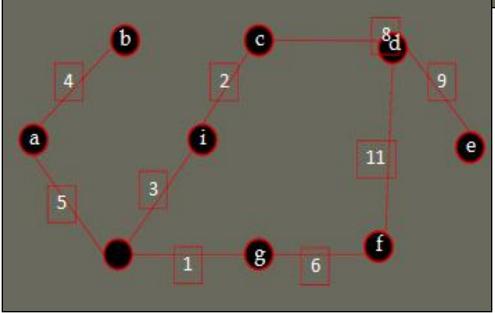
Reject (e , f)
forms a cycle



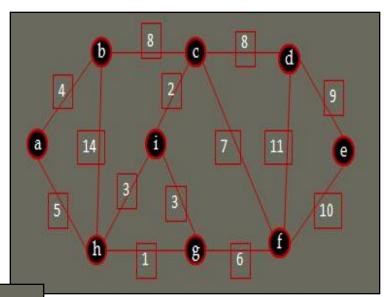


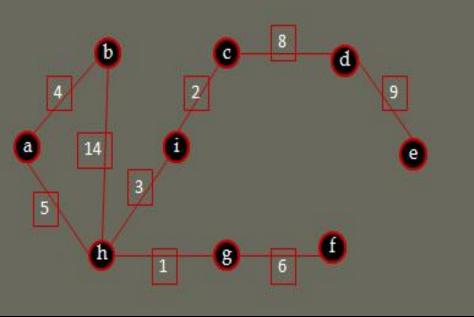
Reject (d , f)
forms a cycle



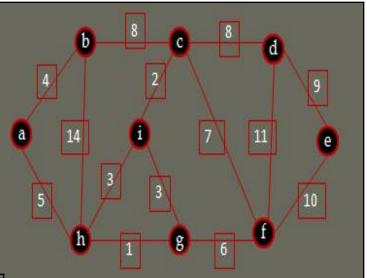


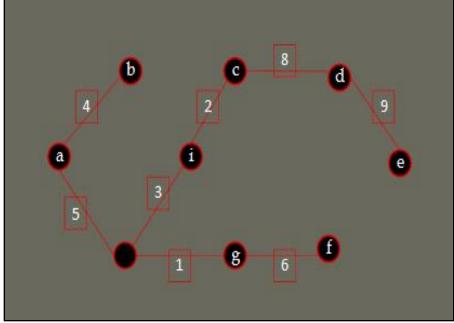
- Reject (b , h)
 - forms a cycle





Answer Minimum Spanning Tree Total weight(MST)=1+2+3+4+5+ 6+8+9=**38**





CLASS P & NP Problems

- Problems solved by Polynomial Time.
- Dividing line between problems.

Tractable Problems

• Problems can be solved in reasonable time and space. Ex:- Sorting

Intractable Problems

Problems not to be solved in polynomial time.Ex: Class p and np problems

Example - CLASS P Problems

• Kruskal's Algorithm

Minimum Weight Spanning Tree

Example - CLASS NP Problems

• Travelling Salesman Problem

Travelling Salesman Problem

