Presentation Topic:

ANALOG TO DIGITAL CONVERSION (ADC)

ADC Basic Principle:

- The basic principle of operation is to use the comparator principle to determine whether or not to turn on a particular bit of the binary number output.
- It is typical for an ADC to use a digital-toanalog converter (DAC) to determine one of the inputs to the comparator.

3 Basic Types

- Flash ADC
- Digital-Ramp/Dual slope/Counter slope ADC
- Successive Approximation ADC

1-> Flash ADC

 Consists of a series of comparators, each one comparing the input signal to a unique reference voltage.

 The comparator outputs connect to the inputs of a priority encoder circuit, which produces a binary output

3 bit Flash ADC Circuit

How Flash Works

- As the analog input voltage exceeds the reference voltage at each comparator, the comparator outputs will sequentially saturate to a high state.
- The priority encoder generates a binary number based on the highest-order active input, ignoring all other active inputs.

Flash

Advantages

- Simplest in terms of operational theory
- Most efficient in terms of speed, very fast

limited only in terms of comparator and gate propagation delays

Disadvantages

- Lower resolution
- Expensive
- For each additional output bit, the number of comparators is doubled

i.e. for 8 bits, 256 comparators needed

2-> Dual Slope ADC

Also known as Counter-Ramp or Digital Ramp ADC

 A dual slope ADC is commonly used in measurement instruments (such as DVM's).

Dual Slope ADC circuit

Dual Slope Function

- The Dual Slope ADC functions in this manner:
 - When an analog value is applied the capacitor begins to charge in a linear manner and the oscillator passes to the counter.
 - The counter continues to count until it reaches a predetermined value. Once this value is reached the count stops and the counter is reset. The control logic switches the input to the first comparator to a reference voltage, providing a discharge path for the capacitor.
 - As the capacitor discharges the counter counts.
 - When the capacitor voltage reaches the reference voltage the count stops and the value is stored in the register.

Successive approximation ADC

- Much faster than the digital ramp ADC because it uses digital logic to converge on the value closest to the input voltage.
- A comparator and a DAC are used in the process.

Successive Approximation ADC

- A Successive Approximation Register (SAR) is added to the circuit
- Instead of counting up in binary sequence, this register counts by trying all values of bits starting with the MSB and finishing at the LSB.
- The register monitors the comparators output to see if the binary count is greater or less than the analog signal input and adjusts the bits accordingly

Successive Approximation ADC Circuit

Examples of A/D Applications

- Microphones take your voice varying pressure waves in the air and convert them into varying electrical signals
- Strain Gages determines the amount of strain (change in dimensions) when a stress is applied
- Thermocouple temperature measuring device converts thermal energy to electric energy
- Voltmeters
- Digital Multimeters