
CS8391

DATA STRUCTURES

Unit I – Linear Data Structures

And List

Abstract Data Types (ADTs) – List

ADT – array-based implementation – linked

list implementation – singly linked lists-

circularly linked lists- doubly-linked lists –

applications of lists – Polynomial

Manipulation – All operations (Insertion,

Deletion, Merge,Traversal).

Data Structures

Definition 1

 Data Structures is a way of Organizing,

 Storing and

 Retrieving Data

 And representing their relationship with each other.

Data Structures

Definition 2

 A data structure is basically a group of data elements

 That are put together under one name, and

 Which defines a particular way of storing and organizing

data in a computer

 So that it can be used efficiently.

Data Structure

 Data structures are building blocks of a program.

 Data Structures = Related Data + Allowed Operations.

 Program = Algorithm + Data Structures.

Operations on Data Structures

 Traversing

 Searching

 Inserting

 Deleting

 Sorting

 Merging

Classification of Data Structure

Data structure

Primitive DS Non-Primitive DS

Integer Float Character PointerFloatInteger Float

Classification of Data Structure

Non-Primitive DS

Linear DS Non-Linear DS

Array

Link List Stack

Queue Graph Trees

Primitive Data Structure

 There are basic structures and directly operated

upon by the machine instructions.

 In general, there are different representation on

different computers.

 Integer, Floating-point number, Character constants,

string constants, pointers etc, fall in this category.

Non-Primitive Data Structure

 There are more sophisticated data structures.

 These are derived from the primitive data structures.

 The non-primitive data structures emphasize on structuring of a

group of homogeneous (same type) or heterogeneous (different

type) data items.

 Lists, Stack, Queue, Tree, Graph are example of non-primitive data

structures.

 The design of an efficient data structure must take operations to be

performed on the data structure.

Different between them

 A primitive data structure is generally a

basic structure that is usually built into

the language, such as an integer, a float.

 A non-primitive data structure is built out

of primitive data structures linked

together in meaningful ways, such as a or

a linked-list, binary search tree, AVL Tree,

graph etc.

Classification of Data Structure

Non-Primitive DS

Linear DS Non-Linear DS

Array

Link List Stack

Queue Graph Trees

Linear Data Structures

 If the elements of a DS are stored in a linear or

sequential order then it is called as Linear DS.

 Linear DS can be represented in memory in two

different ways.

 One way is to have to a linear relationship between

elements by means of sequential memory locations.

 The other way is to have a linear relationship between

elements by means of links.

 Ex : List, Linked List, Stack, Queue.

Non Linear Data Structures

 If the elements of a data structure are not stored in a

sequential order, then it is a non-linear data structure.

 A DS which represents a hierarchical arrangement is

called Non Linear Data Structures.

 Ex : Tree, Graph.

Applications of Data Structures

 Compiler Design

 Operating System

 Statistical Analysis

 Numerical Analysis

 Artificial Intelligence

 Database Management System

 Graphics

CS8391 DATA STRUCTURES

UNIT I LINEAR DATA STRUCTURES – LIST

Abstract Data Types (ADTs) – List ADT – array-based implementation – linked
list implementation ––singly linked lists- circularly linked lists- doubly-linked
lists – applications of lists –Polynomial Manipulation – All operations (Insertion,
Deletion, Merge,Traversal).

UNIT II LINEAR DATA STRUCTURES – STACKS, QUEUES Stack ADT
– Operations - Applications - Evaluating arithmetic expressions- Conversion of
Infix to postfix expression - Queue ADT – Operations - Circular Queue –
Priority Queue - deQueue – applications of queues.

UNIT III NON LINEAR DATA STRUCTURES –TREES

Tree ADT – tree traversals - Binary Tree ADT – expression trees –
applications of trees – binary search tree ADT –Threaded Binary Trees- AVL
Trees – B-Tree - B+ Tree - Heap –Applications of heap.

UNIT IV NON LINEAR DATA STRUCTURES - GRAPHS

Definition – Representation of Graph – Types of graph - Breadth-first traversal -
Depth-first traversal – Topological Sort – Bi-connectivity – Cut vertex – Euler
circuits –Applications of graphs.

UNITV SEARCHING, SORTING AND HASHING TECHNIQUES

Searching- Linear Search - Binary Search. Sorting - Bubble sort - Selection sort
- Insertion sort - Shell sort – Radix sort. Hashing- Hash Functions – Separate
Chaining – Open Addressing – Rehashing – Extendible Hashing.

Abstract Data Type

 An ADT is the way we look at a DS focusing what it does,

ignoring how it does the job.

 An ADT is a set of elements together with the set of well

defined operations.

 ADT is an extension of Modularity design.

 ADT is a model used to understand the design of DS.

 Abstract : Means not considering detailed specifications

or implementation.

 Data Type : Data type of a variable is the set of values that

the variable can take.

Abstract Data Type

 Advantages

◦ ADT make simple the modification to a program.

◦ It separates the use of a DS from the details of its

implementation.

◦ If the element at position i is Ai then its successor is Ai+1 is

and its predecessor is Ai-1

 List ADT

◦ List is an ordered set of elements.

◦ Collection of Elements is called as a List

A1,A2,A3,……………An

◦ Where A1→ First Element of the list

An→ Last Element of the list

n→ Size of the List

Operations on List ADT

 Insert(x,6) - Insert the element x after the position 9.

 Delete(x) –The element x will be deleted.

 Find(x) - Returns the position of x.

 Previous(i) – Returns the position of its predecessor(i-1).

 Next(i) - Returns the position of its successor(i+1).

 PrintList() - Contents of the list is displayed.

 MakeEmpty() – Makes the list empty.

Implementation of List ADT

 Array Implementation

 Linked List Implementation

 Cursor Implementation

Array Implementation

 An array is a collection of similar data elements.

 These data elements have the same data type.

 The elements of the array are stored in consecutive

memory locations and are referenced by an index (also

known as the subscript).

 The subscript is an ordinal number which is used to

identify an element of the array.

Declaration of Arrays

 Declaring an array means specifying the following:

 Data type—the kind of values it can store, for example, int,

char, float, double.

 Name—to identify the array.

 Size—the maximum number of values that the array can

hold.

 Syntax: type name[size]; Ex: int marks[10];

Operations on Arrays

 Traversing an array

 Inserting an element in an array

 Searching an element in an array

 Deleting an element from an array

 Merging two arrays

 Sorting an array in ascending or descending order

Traversing an Array

 Traversing the data elements of an array A can include

printing every element, counting the total number of

elements, or performing any process on these elements.

 Array is a linear data structure (because all its elements

form a sequence), traversing its elements is very simple

and straightforward

Inserting an Element in an Array

 If an element has to be inserted at the end of an

existing array, the

 n the task of insertion is quite simple.

Insert an Element in the Middle of an Array

 The algorithm INSERT will be declared as INSERT (A, N,

POS, VAL). The arguments are

 (a) A, the array in which the element has to be inserted

 (b) N, the number of elements in the array

 (c) POS, the position at which the element has to be

inserted

 (d) VAL, the value that has to be inserted

Example

Deleting an Element from an Array

 Deleting an element from an array means removing a

data element from an already existing array.

 If the element has to be deleted from the end of the

existing array, then the task of deletion is quite simple.

 We just have to subtract 1 from the upper bound.

Delete an element from the middle of

an array
 The algorithm DELETE will be declared as DELETE(A,

N, POS). The arguments are:

 (a) A, the array from which the element has to be

 deleted

 (b) N, the number of elements in the array

 (c) POS, the position from which the element has to

 be deleted.

Example

Merging Two Arrays

 Merging two arrays in a third array means first copying

the contents of the first array into the third array and

then copying the contents of the second array into the

third array.

 Hence, the merged array contains the contents of the

first array follow ed by the contents of the second array.

Limitations of Arrays

 Arrays have a fixed dimension

 Once the size of the array decided it can not be increased

or decreased during execution.

 Insertion and deletion operations are pretty tedious.

 To over come these limitations we can use LINKED LIST.

Linked List

 A linked list is a series of connected nodes.

 Linked list is a collection of nodes.

 Each node contains two fields

◦ Data Field(any type)

◦ Address Field (Pointer to the next node in the list)

Node

A

Data Pointer

Linked List

 Head is a pointer to the first node.

 The last node of the Linked list points to NULL.

 Insertion and deletion operations are easily performed

using Linked List.

 A Linked list can easily grow and shrink in size.(Dynamic)

 With a linked list, no need to move other nodes. Only

need to reset some pointers.

A B C

Head

10 2005

05 10 20

Types of Linked List

 Singly Linked List

 Doubly Linked List

 Circular Linked List

Singly Linked List

 A SLL is a LL in which each node contains only one linked

field pointing to the next node in the list.

 A singly linked list is the simplest type of linked list.

 A singly linked list allows traversal of data only in one

way.

Declaration for Linked List

Struct Node

{

int data;

position *next;

};

Operations on Singly Linked List

 Traversing a Linked List

 IsEmpty and IsLast

 Find

 Find Previous and Find Next

 Inserting a New Node in a Linked List

◦ Case 1:The new node is inserted at the beginning.

◦ Case 2:The new node is inserted at the end.

◦ Case 3:The new node is inserted after a given node.

◦ Case 4:The new node is inserted before a given node.

 Deleting a New Node from a Linked List

◦ Case 1:The first node is deleted.

◦ Case 2:The last node is deleted.

◦ Case 3:The node after a given node is deleted.

 Merging two linked List

Traversing a Linked List

 Traversing a linked list means accessing the nodes of the

list in order to perform some processing on them.

 Remember a linked list always contains a pointer variable

START which stores the address of the first node of the

list.

 End of the list is marked by storing NULL or –1 in the

NEXT field of the last node.

 For traversing the linked list, we also make use of another

pointer variable PTR which points to the node that is

currently being accessed.

Traversing a Linked List

Example

 A B C

Algorithm to Insert an element in the list

void Insert(int X, List L, Position P)

{

position Newnode;

Newnode=malloc(sizeof(Struct Node));

If(Newnode!=NULL)

{

Newnode->Element=X;

Newnode->Next=P->Next;

P->Next=Newnode;

}

}

Example

Example

 Before Insertion

 To Insert: After 3

 After Insertion

Find Routine(Algorithm)

Position Find(int X, List L)

{

Position P;

P=L->Next;

while(P!=NULL && P->Element!=X)

P=P->Next;

return P;

}

FindNext Algorithm

Position FindNext(int X, List L)

{

Position P;

P=L->Next;

while(P->Next!=NULL && P->Element!=X)

P=P->Next;

return P->Next;

}

Find Previous Algorithm

Position FindPrevious(int X, List L)

{

Position P;

P=L;

while(P->Next!=NULL && P->Next->Element!=X)

P=P->Next;

return P;

}

Deleting the Node

void Delete(int X, List L)

{

Position=L->Next;

PrePosition=Position;

while(Position->Element!=X)

{

PrePosition=Position;

Position=Position->Next;

}

Temp=Position;

PrePosition->Next= Position->Next;

Free Temp;

}

Example

 Before Deletion : X=B

 After Deletion:

05 A 20 c 

Merging Two SLL

void MergeSLL(List L1,List L2)

{

P=L1->Next;

while(P->Next!=NULL)

P=P->Next;

P->Next=L2->Next;

Free(L2->Next);

}

Doubly Linked Lists

 A doubly linked list or a two-way linked list is a more

complex type of linked list.

 A DLL has Three fields namely

◦ Data Field

◦ Forward Link – Points to the successor node

◦ Backward Link – Points to the predecessor node.

Doubly Linked Lists

 The BLINK field of the first node and the FLINK field of

the last node will contain NULL.

 The BLINK field is used to store the address of the

preceding node, which enables us to traverse the list in the

backward direction.

 A DLL provides the ease to manipulate the elements of

the list as it maintains pointers to nodes in both the

directions (forward and backward).

 The main advantage of using a doubly linked list is that

it makes searching twice as efficient.

Structure Declartion

Struct Node

{

int Element;

Struct Node *FLINK;

Struct Node *BLINK;

}

Operations on Doubly Linked List

 Inserting a New Node in a Doubly Linked List

◦ Case 1:The new node is inserted at the beginning.

◦ Case 2:The new node is inserted at the end.

◦ Case 3:The new node is inserted after a given node.

◦ Case 4:The new node is inserted before a given node.

 Deleting a New Node from a Doubly Linked List

◦ Case 1:The first node is deleted.

◦ Case 2:The last node is deleted.

◦ Case 3:The node after a given node is deleted.

◦ Case 4:The node before a given node is deleted.

◦ Merging two linked List

Routine to Insert an Element in a DLL

void Insert(int X, List L, Position P)

{

Struct Node *Newnode;

Newnode=malloc(sizeof(Struct Node));

if(Newnode!=NULL)

{

Newnode->Element=X;

Newnode->FLINK=P->FLINK;

P->FLINK->BLINK=Newnode;

P->FLINK=Newnode;

Newnode->BLINK=P;

}

}

Example

100

150

200 300

100

Routine to Delete an Element after a given node

void Delete(int X, List L)

{

Position P;

P=L->Next;

while (P->Element!= X)

P=P->FLINK;

P->BLINK->FLINK=P->FLINK;

P->FLINK->BLINK=P->BLINK;

}

Example

 Before Deletion

 To Delete : 7

 After Deletion

Merging Two DLL

void MergeDLL(List L1,List L2)

{

P1=L1->Next;

P2=L2->Next;

while(P1->FLINK!=NULL)

P1=P1-> FLINK;

P1-> FLINK =P2;

P2->BLINK=P1

Free(L2->Next);

}

Circular Linked List

 In a circular linked list, the last node contains a pointer

to the first node of the list.

 CLL can be implemented with or without headers.

 Types:

◦ Singly Linked Circular List

◦ Doubly Linked Circular List

 A circular linked list has no beginning and no ending.

 Circular linked lists are widely used in operating

systems for task maintenance.

Singly Linked Circular List

 A Singly Linked Circular List is a Linked List in which the

last node of the list points to the first node.

Operations on SLCL

 Inserting a New Node in a Circular Linked List

◦ Case 1: The new node is inserted at the beginning of the circular

linked list.

◦ Case 2: The new node is inserted at the end of the circular linked

list.

 Deleting a Node from a Circular Linked List

◦ Case 1:The first node is deleted.

◦ Case 2:The last node is deleted.

Insertion at First

void Insertion(List L, int X)

{

Newnode=malloc(sizeof(Struct node));

if(Newnode!=NULL)

{

Newnode->Element=X;

P=L->Next;

while(P->Next!=P)

P=P->Next;

P->Next=Newnode;

Newnode->Next=L->Next;

L->Next=Newnode;

}

}

Example

 Before Insertion

 To insert at first

 After Insertion

Deletion at First

void Delete(List L)

{

P=L->Next;

START=P;

Temp=P->Next;

while(P->Next!=START)

P=P->Next;

P->Next=Temp;

L->Next=Temp;

Free(Temp);

Free(START);

}

Example

 Before Deletion

 After Deletion

100 200 500 600 700400300

100200

200

Circular Doubly Linked List

 A circular doubly linked list or a circular two-way linked

list which contains a pointer to the next as well as the

previous node in the sequence.

 The circular doubly linked list does not contain NULL in

the previous field of the first node and the next field of

the last node.

 Rather, the next field of the last node stores the address

of the first node of the list, i.e., START.

 Similarly, the previous field of the first field stores the

address of the last node.

Insertion at First

Example

 Before Insertion

 To Insert : Address: 700

 After Insertion

Deletion at Last

Example

 Before Deletion

 To Delete: 9

 After Deletion

Applications of Linked List

 Polynomial ADT

 Radix Sort

 Multilist

Polynomial ADT

 Linked lists can be used to represent polynomials and

the different operations that can be performed on

them.

Polynomial Representation

 Every individual term in a polynomial consists of two

parts, a coefficient and a power.

 Consider a polynomial 6x3 + 9x2 + 7x + 1.

 Here, 6, 9, 7, and 1 are the coefficients of the terms that

have 3, 2, 1, and 0 as their powers respectively.

 Every term of a polynomial can be represented as a

node of the linked list.

Structure Declaration for Polynomial ADT

Struct Poly

{

int coeff;

int power;

Struct Poly *Next;

}*list1,*list2,*list3;

Creation of the Polynomial
poly create(poly *head1,poly *newnode1)

{

poly *ptr;

if(head1==NULL)

{

head1=newnode1;

return(head1);

}

else

{

ptr=head1;

while(ptr→next!=NULL)

ptr=ptr→next;

ptr→next=newnode1;

}

return head1;

}

Addition of Two Polynomial

Void add()

{

poly *ptr1,*ptr2,*newnode;

ptr1=list1;

ptr2=list2;

while(ptr1!=NULL && ptr2!=NULL)

{

newnode=malloc(sizeof(Struc poly));

if(ptr1→power==ptr2→power)

{

newnode→coeff=ptr1→coeff+ptr2→coeff;

newnode→power=ptr1→power;

newnode→next=NULL:

list3=create(list3,newnode);

ptr1=ptr1→next;

ptr2=ptr2→next;

}

Addition of Two Polynomial (Cont.,)

else

{

if(ptr1→power>ptr2→power)

{

newnode→coeff=ptr1→coeff;

newnode→power=ptr1→power;

newnode→next=NULL:

list3=create(list3,newnode);

ptr1=ptr1→next;

}

Addition of Two Polynomial (Cont.,)

else

{

newnode→coeff=ptr2→coeff;

newnode→power=ptr2→power;

newnode→next=NULL:

list3=create(list3,newnode);

ptr2=ptr2→next;

}

}

}

Example

ptr1→6x3 + 9x2 + 7x + 1.

ptr2→3x3 + 6x2 + 2x + 8.

ptr3→9x3 + 15x2 + 9x + 9.

Part B

1. Explain about classification of DS.

2. Write short notes on List ADT.

3. How can you insert an element after a position in a SLL?

Explain with suitable example and algorithm.

4. Define DLL.Write the operations performed on that.

5. Write the operations performed on Doubly Linked

Circular List.

6. Write the algorithm to insert a new node at First into

the Singly Linked Circular List. Explain with an example.

How to answer Part B and Part C Questions?

 Definition - Should be very Clear

 Algorithm

 Example – Should comprise like Before insertion, To insert,

After Insertion

 Neat Diagram Representation (If necessary)

