
CS8391

DATA STRUCTURES

Unit I – Linear Data Structures

And List

Abstract Data Types (ADTs) – List

ADT – array-based implementation – linked

list implementation – singly linked lists-

circularly linked lists- doubly-linked lists –

applications of lists – Polynomial

Manipulation – All operations (Insertion,

Deletion, Merge,Traversal).

Data Structures

Definition 1

 Data Structures is a way of Organizing,

 Storing and

 Retrieving Data

 And representing their relationship with each other.

Data Structures

Definition 2

 A data structure is basically a group of data elements

 That are put together under one name, and

 Which defines a particular way of storing and organizing

data in a computer

 So that it can be used efficiently.

Data Structure

 Data structures are building blocks of a program.

 Data Structures = Related Data + Allowed Operations.

 Program = Algorithm + Data Structures.

Operations on Data Structures

 Traversing

 Searching

 Inserting

 Deleting

 Sorting

 Merging

Classification of Data Structure

Data structure

Primitive DS Non-Primitive DS

Integer Float Character PointerFloatInteger Float

Classification of Data Structure

Non-Primitive DS

Linear DS Non-Linear DS

Array

Link List Stack

Queue Graph Trees

Primitive Data Structure

 There are basic structures and directly operated

upon by the machine instructions.

 In general, there are different representation on

different computers.

 Integer, Floating-point number, Character constants,

string constants, pointers etc, fall in this category.

Non-Primitive Data Structure

 There are more sophisticated data structures.

 These are derived from the primitive data structures.

 The non-primitive data structures emphasize on structuring of a

group of homogeneous (same type) or heterogeneous (different

type) data items.

 Lists, Stack, Queue, Tree, Graph are example of non-primitive data

structures.

 The design of an efficient data structure must take operations to be

performed on the data structure.

Different between them

 A primitive data structure is generally a

basic structure that is usually built into

the language, such as an integer, a float.

 A non-primitive data structure is built out

of primitive data structures linked

together in meaningful ways, such as a or

a linked-list, binary search tree, AVL Tree,

graph etc.

Classification of Data Structure

Non-Primitive DS

Linear DS Non-Linear DS

Array

Link List Stack

Queue Graph Trees

Linear Data Structures

 If the elements of a DS are stored in a linear or

sequential order then it is called as Linear DS.

 Linear DS can be represented in memory in two

different ways.

 One way is to have to a linear relationship between

elements by means of sequential memory locations.

 The other way is to have a linear relationship between

elements by means of links.

 Ex : List, Linked List, Stack, Queue.

Non Linear Data Structures

 If the elements of a data structure are not stored in a

sequential order, then it is a non-linear data structure.

 A DS which represents a hierarchical arrangement is

called Non Linear Data Structures.

 Ex : Tree, Graph.

Applications of Data Structures

 Compiler Design

 Operating System

 Statistical Analysis

 Numerical Analysis

 Artificial Intelligence

 Database Management System

 Graphics

CS8391 DATA STRUCTURES

UNIT I LINEAR DATA STRUCTURES – LIST

Abstract Data Types (ADTs) – List ADT – array-based implementation – linked
list implementation ––singly linked lists- circularly linked lists- doubly-linked
lists – applications of lists –Polynomial Manipulation – All operations (Insertion,
Deletion, Merge,Traversal).

UNIT II LINEAR DATA STRUCTURES – STACKS, QUEUES Stack ADT
– Operations - Applications - Evaluating arithmetic expressions- Conversion of
Infix to postfix expression - Queue ADT – Operations - Circular Queue –
Priority Queue - deQueue – applications of queues.

UNIT III NON LINEAR DATA STRUCTURES –TREES

Tree ADT – tree traversals - Binary Tree ADT – expression trees –
applications of trees – binary search tree ADT –Threaded Binary Trees- AVL
Trees – B-Tree - B+ Tree - Heap –Applications of heap.

UNIT IV NON LINEAR DATA STRUCTURES - GRAPHS

Definition – Representation of Graph – Types of graph - Breadth-first traversal -
Depth-first traversal – Topological Sort – Bi-connectivity – Cut vertex – Euler
circuits –Applications of graphs.

UNITV SEARCHING, SORTING AND HASHING TECHNIQUES

Searching- Linear Search - Binary Search. Sorting - Bubble sort - Selection sort
- Insertion sort - Shell sort – Radix sort. Hashing- Hash Functions – Separate
Chaining – Open Addressing – Rehashing – Extendible Hashing.

Abstract Data Type

 An ADT is the way we look at a DS focusing what it does,

ignoring how it does the job.

 An ADT is a set of elements together with the set of well

defined operations.

 ADT is an extension of Modularity design.

 ADT is a model used to understand the design of DS.

 Abstract : Means not considering detailed specifications

or implementation.

 Data Type : Data type of a variable is the set of values that

the variable can take.

Abstract Data Type

 Advantages

◦ ADT make simple the modification to a program.

◦ It separates the use of a DS from the details of its

implementation.

◦ If the element at position i is Ai then its successor is Ai+1 is

and its predecessor is Ai-1

 List ADT

◦ List is an ordered set of elements.

◦ Collection of Elements is called as a List

A1,A2,A3,……………An

◦ Where A1→ First Element of the list

An→ Last Element of the list

n→ Size of the List

Operations on List ADT

 Insert(x,6) - Insert the element x after the position 9.

 Delete(x) –The element x will be deleted.

 Find(x) - Returns the position of x.

 Previous(i) – Returns the position of its predecessor(i-1).

 Next(i) - Returns the position of its successor(i+1).

 PrintList() - Contents of the list is displayed.

 MakeEmpty() – Makes the list empty.

Implementation of List ADT

 Array Implementation

 Linked List Implementation

 Cursor Implementation

Array Implementation

 An array is a collection of similar data elements.

 These data elements have the same data type.

 The elements of the array are stored in consecutive

memory locations and are referenced by an index (also

known as the subscript).

 The subscript is an ordinal number which is used to

identify an element of the array.

Declaration of Arrays

 Declaring an array means specifying the following:

 Data type—the kind of values it can store, for example, int,

char, float, double.

 Name—to identify the array.

 Size—the maximum number of values that the array can

hold.

 Syntax: type name[size]; Ex: int marks[10];

Operations on Arrays

 Traversing an array

 Inserting an element in an array

 Searching an element in an array

 Deleting an element from an array

 Merging two arrays

 Sorting an array in ascending or descending order

Traversing an Array

 Traversing the data elements of an array A can include

printing every element, counting the total number of

elements, or performing any process on these elements.

 Array is a linear data structure (because all its elements

form a sequence), traversing its elements is very simple

and straightforward

Inserting an Element in an Array

 If an element has to be inserted at the end of an

existing array, the

 n the task of insertion is quite simple.

Insert an Element in the Middle of an Array

 The algorithm INSERT will be declared as INSERT (A, N,

POS, VAL). The arguments are

 (a) A, the array in which the element has to be inserted

 (b) N, the number of elements in the array

 (c) POS, the position at which the element has to be

inserted

 (d) VAL, the value that has to be inserted

Example

Deleting an Element from an Array

 Deleting an element from an array means removing a

data element from an already existing array.

 If the element has to be deleted from the end of the

existing array, then the task of deletion is quite simple.

 We just have to subtract 1 from the upper bound.

Delete an element from the middle of

an array
 The algorithm DELETE will be declared as DELETE(A,

N, POS). The arguments are:

 (a) A, the array from which the element has to be

 deleted

 (b) N, the number of elements in the array

 (c) POS, the position from which the element has to

 be deleted.

Example

Merging Two Arrays

 Merging two arrays in a third array means first copying

the contents of the first array into the third array and

then copying the contents of the second array into the

third array.

 Hence, the merged array contains the contents of the

first array follow ed by the contents of the second array.

Limitations of Arrays

 Arrays have a fixed dimension

 Once the size of the array decided it can not be increased

or decreased during execution.

 Insertion and deletion operations are pretty tedious.

 To over come these limitations we can use LINKED LIST.

Linked List

 A linked list is a series of connected nodes.

 Linked list is a collection of nodes.

 Each node contains two fields

◦ Data Field(any type)

◦ Address Field (Pointer to the next node in the list)

Node

A

Data Pointer

Linked List

 Head is a pointer to the first node.

 The last node of the Linked list points to NULL.

 Insertion and deletion operations are easily performed

using Linked List.

 A Linked list can easily grow and shrink in size.(Dynamic)

 With a linked list, no need to move other nodes. Only

need to reset some pointers.

A B C

Head

10 2005

05 10 20

Types of Linked List

 Singly Linked List

 Doubly Linked List

 Circular Linked List

Singly Linked List

 A SLL is a LL in which each node contains only one linked

field pointing to the next node in the list.

 A singly linked list is the simplest type of linked list.

 A singly linked list allows traversal of data only in one

way.

Declaration for Linked List

Struct Node

{

int data;

position *next;

};

Operations on Singly Linked List

 Traversing a Linked List

 IsEmpty and IsLast

 Find

 Find Previous and Find Next

 Inserting a New Node in a Linked List

◦ Case 1:The new node is inserted at the beginning.

◦ Case 2:The new node is inserted at the end.

◦ Case 3:The new node is inserted after a given node.

◦ Case 4:The new node is inserted before a given node.

 Deleting a New Node from a Linked List

◦ Case 1:The first node is deleted.

◦ Case 2:The last node is deleted.

◦ Case 3:The node after a given node is deleted.

 Merging two linked List

Traversing a Linked List

 Traversing a linked list means accessing the nodes of the

list in order to perform some processing on them.

 Remember a linked list always contains a pointer variable

START which stores the address of the first node of the

list.

 End of the list is marked by storing NULL or –1 in the

NEXT field of the last node.

 For traversing the linked list, we also make use of another

pointer variable PTR which points to the node that is

currently being accessed.

Traversing a Linked List

Example

 A B C

Algorithm to Insert an element in the list

void Insert(int X, List L, Position P)

{

position Newnode;

Newnode=malloc(sizeof(Struct Node));

If(Newnode!=NULL)

{

Newnode->Element=X;

Newnode->Next=P->Next;

P->Next=Newnode;

}

}

Example

Example

 Before Insertion

 To Insert: After 3

 After Insertion

Find Routine(Algorithm)

Position Find(int X, List L)

{

Position P;

P=L->Next;

while(P!=NULL && P->Element!=X)

P=P->Next;

return P;

}

FindNext Algorithm

Position FindNext(int X, List L)

{

Position P;

P=L->Next;

while(P->Next!=NULL && P->Element!=X)

P=P->Next;

return P->Next;

}

Find Previous Algorithm

Position FindPrevious(int X, List L)

{

Position P;

P=L;

while(P->Next!=NULL && P->Next->Element!=X)

P=P->Next;

return P;

}

Deleting the Node

void Delete(int X, List L)

{

Position=L->Next;

PrePosition=Position;

while(Position->Element!=X)

{

PrePosition=Position;

Position=Position->Next;

}

Temp=Position;

PrePosition->Next= Position->Next;

Free Temp;

}

Example

 Before Deletion : X=B

 After Deletion:

05 A 20 c

Merging Two SLL

void MergeSLL(List L1,List L2)

{

P=L1->Next;

while(P->Next!=NULL)

P=P->Next;

P->Next=L2->Next;

Free(L2->Next);

}

Doubly Linked Lists

 A doubly linked list or a two-way linked list is a more

complex type of linked list.

 A DLL has Three fields namely

◦ Data Field

◦ Forward Link – Points to the successor node

◦ Backward Link – Points to the predecessor node.

Doubly Linked Lists

 The BLINK field of the first node and the FLINK field of

the last node will contain NULL.

 The BLINK field is used to store the address of the

preceding node, which enables us to traverse the list in the

backward direction.

 A DLL provides the ease to manipulate the elements of

the list as it maintains pointers to nodes in both the

directions (forward and backward).

 The main advantage of using a doubly linked list is that

it makes searching twice as efficient.

Structure Declartion

Struct Node

{

int Element;

Struct Node *FLINK;

Struct Node *BLINK;

}

Operations on Doubly Linked List

 Inserting a New Node in a Doubly Linked List

◦ Case 1:The new node is inserted at the beginning.

◦ Case 2:The new node is inserted at the end.

◦ Case 3:The new node is inserted after a given node.

◦ Case 4:The new node is inserted before a given node.

 Deleting a New Node from a Doubly Linked List

◦ Case 1:The first node is deleted.

◦ Case 2:The last node is deleted.

◦ Case 3:The node after a given node is deleted.

◦ Case 4:The node before a given node is deleted.

◦ Merging two linked List

Routine to Insert an Element in a DLL

void Insert(int X, List L, Position P)

{

Struct Node *Newnode;

Newnode=malloc(sizeof(Struct Node));

if(Newnode!=NULL)

{

Newnode->Element=X;

Newnode->FLINK=P->FLINK;

P->FLINK->BLINK=Newnode;

P->FLINK=Newnode;

Newnode->BLINK=P;

}

}

Example

100

150

200 300

100

Routine to Delete an Element after a given node

void Delete(int X, List L)

{

Position P;

P=L->Next;

while (P->Element!= X)

P=P->FLINK;

P->BLINK->FLINK=P->FLINK;

P->FLINK->BLINK=P->BLINK;

}

Example

 Before Deletion

 To Delete : 7

 After Deletion

Merging Two DLL

void MergeDLL(List L1,List L2)

{

P1=L1->Next;

P2=L2->Next;

while(P1->FLINK!=NULL)

P1=P1-> FLINK;

P1-> FLINK =P2;

P2->BLINK=P1

Free(L2->Next);

}

Circular Linked List

 In a circular linked list, the last node contains a pointer

to the first node of the list.

 CLL can be implemented with or without headers.

 Types:

◦ Singly Linked Circular List

◦ Doubly Linked Circular List

 A circular linked list has no beginning and no ending.

 Circular linked lists are widely used in operating

systems for task maintenance.

Singly Linked Circular List

 A Singly Linked Circular List is a Linked List in which the

last node of the list points to the first node.

Operations on SLCL

 Inserting a New Node in a Circular Linked List

◦ Case 1: The new node is inserted at the beginning of the circular

linked list.

◦ Case 2: The new node is inserted at the end of the circular linked

list.

 Deleting a Node from a Circular Linked List

◦ Case 1:The first node is deleted.

◦ Case 2:The last node is deleted.

Insertion at First

void Insertion(List L, int X)

{

Newnode=malloc(sizeof(Struct node));

if(Newnode!=NULL)

{

Newnode->Element=X;

P=L->Next;

while(P->Next!=P)

P=P->Next;

P->Next=Newnode;

Newnode->Next=L->Next;

L->Next=Newnode;

}

}

Example

 Before Insertion

 To insert at first

 After Insertion

Deletion at First

void Delete(List L)

{

P=L->Next;

START=P;

Temp=P->Next;

while(P->Next!=START)

P=P->Next;

P->Next=Temp;

L->Next=Temp;

Free(Temp);

Free(START);

}

Example

 Before Deletion

 After Deletion

100 200 500 600 700400300

100200

200

Circular Doubly Linked List

 A circular doubly linked list or a circular two-way linked

list which contains a pointer to the next as well as the

previous node in the sequence.

 The circular doubly linked list does not contain NULL in

the previous field of the first node and the next field of

the last node.

 Rather, the next field of the last node stores the address

of the first node of the list, i.e., START.

 Similarly, the previous field of the first field stores the

address of the last node.

Insertion at First

Example

 Before Insertion

 To Insert : Address: 700

 After Insertion

Deletion at Last

Example

 Before Deletion

 To Delete: 9

 After Deletion

Applications of Linked List

 Polynomial ADT

 Radix Sort

 Multilist

Polynomial ADT

 Linked lists can be used to represent polynomials and

the different operations that can be performed on

them.

Polynomial Representation

 Every individual term in a polynomial consists of two

parts, a coefficient and a power.

 Consider a polynomial 6x3 + 9x2 + 7x + 1.

 Here, 6, 9, 7, and 1 are the coefficients of the terms that

have 3, 2, 1, and 0 as their powers respectively.

 Every term of a polynomial can be represented as a

node of the linked list.

Structure Declaration for Polynomial ADT

Struct Poly

{

int coeff;

int power;

Struct Poly *Next;

}*list1,*list2,*list3;

Creation of the Polynomial
poly create(poly *head1,poly *newnode1)

{

poly *ptr;

if(head1==NULL)

{

head1=newnode1;

return(head1);

}

else

{

ptr=head1;

while(ptr→next!=NULL)

ptr=ptr→next;

ptr→next=newnode1;

}

return head1;

}

Addition of Two Polynomial

Void add()

{

poly *ptr1,*ptr2,*newnode;

ptr1=list1;

ptr2=list2;

while(ptr1!=NULL && ptr2!=NULL)

{

newnode=malloc(sizeof(Struc poly));

if(ptr1→power==ptr2→power)

{

newnode→coeff=ptr1→coeff+ptr2→coeff;

newnode→power=ptr1→power;

newnode→next=NULL:

list3=create(list3,newnode);

ptr1=ptr1→next;

ptr2=ptr2→next;

}

Addition of Two Polynomial (Cont.,)

else

{

if(ptr1→power>ptr2→power)

{

newnode→coeff=ptr1→coeff;

newnode→power=ptr1→power;

newnode→next=NULL:

list3=create(list3,newnode);

ptr1=ptr1→next;

}

Addition of Two Polynomial (Cont.,)

else

{

newnode→coeff=ptr2→coeff;

newnode→power=ptr2→power;

newnode→next=NULL:

list3=create(list3,newnode);

ptr2=ptr2→next;

}

}

}

Example

ptr1→6x3 + 9x2 + 7x + 1.

ptr2→3x3 + 6x2 + 2x + 8.

ptr3→9x3 + 15x2 + 9x + 9.

Part B

1. Explain about classification of DS.

2. Write short notes on List ADT.

3. How can you insert an element after a position in a SLL?

Explain with suitable example and algorithm.

4. Define DLL.Write the operations performed on that.

5. Write the operations performed on Doubly Linked

Circular List.

6. Write the algorithm to insert a new node at First into

the Singly Linked Circular List. Explain with an example.

How to answer Part B and Part C Questions?

 Definition - Should be very Clear

 Algorithm

 Example – Should comprise like Before insertion, To insert,

After Insertion

 Neat Diagram Representation (If necessary)

