CS8391
DATA STRUCTURES

Unit | = Linear Data Structures
And List

Abstract Data Types (ADTs) — List
ADT — array-based implementation — linked
list implementation — singly linked lists-
circularly linked lists- doubly-linked lists —
applications of lists — Polynomial
Manipulation — All operations (Insertion,
Deletion, Merge, Traversal).

Data Structures

Definition |

Data Structures is a way of Organizing,
 Storing and
* Retrieving Data

e And representing their relationship with each other.

Data Structures

Definition 2
e A data structure is basically a group of data elements
e That are put together under one name, and

* Which defines a particular way of storing and organizing

data in a computer

e So that it can be used efficiently.

Data Structure

e Data structures are building blocks of a program.
e Data Structures = Related Data + Allowed Operations.

* Program = Algorithm + Data Structures.

Operations on Data Structures

» Traversing
e Searching
 Inserting
e Deleting
e Sorting

e Merging

Classification of Data Structure

Data structure

Primitive DS Non-Primitive DS

Integer| | Float | |Character| | Pointer

Classification of Data Structure

Non-Primitive DS

Linear DS

Array

Non-Linear DS

Queue

Graph

LinkvList

Stack

Trees

Primitive Data Structure

e There are basic structures and directly operated

upon by the machine instructions.

* In general, there are different representation on

different computers.

* Integer, Floating-point number, Character constants,

string constants, pointers etc, fall in this category.

Non-Primitive Data Structure

e There are more sophisticated data structures.
* These are derived from the primitive data structures.

* The non-primitive data structures emphasize on structuring of a
group of homogeneous (same type) or heterogeneous (different

type) data items.

 Lists, Stack, Queue, Tree, Graph are example of non-primitive data

structures.

e The design of an efficient data structure must take operations to be

performed on the data structure.

Different between them

e A primitive data structure is generally a
basic structure that is usually built into
the language, such as an integer, a float.

* A non-primitive data structure is built out
of primitive data structures linked
together in meaningful ways, such as a or
a linked-list, binary search tree, AVL Tree,
graph etc.

Classification of Data Structure

Non-Primitive DS

Linear DS

Array

Non-Linear DS

Queue

Graph

LinkvList

Stack

Trees

Linear Data Structures

If the elements of a DS are stored in a linear or
sequential order then it is called as Linear DS.

Linear DS can be represented in memory in two
different ways.

One way is to have to a linear relationship between
elements by means of sequential memory locations.

The other way is to have a linear relationship between
elements by means of links.

Ex : List, Linked List, Stack, Queue.

—) NULL

H
-
=

Non Linear Data Structures

 If the elements of a data structure are not stored in a
sequential order, then it is a non-linear data structure.

e A DS which represents a hierarchical arrangement is
called Non Linear Data Structures.

e Ex: Tree, Graph.

(’w

0 000 00

Edge

Vertices

Applications of Data Structures

e Compiler Design

e Operating System
 Statistical Analysis

* Numerical Analysis
 Artificial Intelligence

e Database Management System

* Graphics

CS8391 DATA STRUCTURES

UNIT | LINEAR DATA STRUCTURES — LIST

Abstract Data Types (ADTs) — List ADT — array-based implementation — linked
list implementation —singly linked lists- circularly linked lists- doubly-linked
lists — applications of lists —Polynomial Manipulation — All operations (Insertion,
Deletion, Merge, Traversal).

UNIT Il LINEAR DATA STRUCTURES — STACKS, QUEUES Stack ADT
— Operations - Applications - Evaluating arithmetic expressions- Conversion of
Infix to postfix expression - Queue ADT — Operations - Circular Queue —
Priority Queue - deQueue — applications of queues.

UNIT 1l NON LINEAR DATA STRUCTURES —TREES

Tree ADT - tree traversals - Binary Tree ADT — expression trees —
applications of trees — binary search tree ADT —Threaded Binary Trees- AVL
Trees — B-Tree - B+ Tree - Heap — Applications of heap.

UNIT IV NON LINEAR DATA STRUCTURES - GRAPHS

Definition — Representation of Graph — Types of graph - Breadth-first traversal -
Depth-first traversal — Topological Sort — Bi-connectivity — Cut vertex — Euler
circuits — Applications of graphs.

UNITV SEARCHING, SORTING AND HASHING TECHNIQUES

Searching- Linear Search - Binary Search. Sorting - Bubble sort - Selection sort
- Insertion sort - Shell sort — Radix sort. Hashing- Hash Functions — Separate
Chaining — Open Addressing — Rehashing — Extendible Hashing.

Abstract Data Type

e An ADT is the way we look at a DS focusing what it does,
ignoring how it does the job.

* An ADT is a set of elements together with the set of well
defined operations.

 ADT is an extension of Modularity design.
 ADT is a model used to understand the design of DS.

e Abstract : Means not considering detailed specifications
or implementation.

e Data Type : Data type of a variable is the set of values that
the variable can take.

Abstract Data Type

e Advantages

o ADT make simple the modification to a program.

° |t separates the use of a DS from the details of its
implementation.

> If the element at position i is Ai then its successor is Ai+i is
and its predecessor is Al
e ListADT

o List is an ordered set of elements.

o Collection of Elements is called as a List
Al,A2,A3, An
> Where A= First Element of the list

An—> Last Element of the list
n—> Size of the List

Operations on List ADT

* Insert(x,6) - Insert the element x after the position 9.
e Delete(x) — The element x will be deleted.

e Find(x) - Returns the position of x.

* Previous(i) — Returns the position of its predecessor(i-1).
e Next(i) - Returns the position of its successor(i+1).
* PrintList() - Contents of the list is displayed.

o MakeEmpty() — Makes the list empty.

Implementation of List ADT

e Array Implementation
 Linked List Implementation

e Cursor Implementation

Array Implementation

e An array is a collection of similar data elements.
e These data elements have the same data type.

* The elements of the array are stored in consecutive
memory locations and are referenced by an index (also
known as the subscript).

e The subscript is an ordinal number which is used to
identify an element of the array.

Marks1 Marks5 Marks9 Marks13 Marks17
1 1]
Marks2 Marks6 Marks10 Marks14 Marks18
7 1 1 [
Marks3 Marks7 Marks11 Marks15 Marks19
7 1 1 [
Marks4 Marks8 Marks12 Marks16 Marks20
| I | [e

Twenty variables for 20 students

Declaration of Arrays

Declaring an array means specifying the following:

Data type—the kind of values it can store, for example, int,
char, float, double.

Name—to identify the array.

Size—the maximum number of values that the array can
hold.

Syntax: type name[size]; Ex:int marks[10];

15t 2r|d 3rd 4TJ'| 5TJ'| Eﬂ'l ?TJ'I BTJ'I gﬂ'l 1 {]Th
element | element | element |element | element | element | element | element | element | element

marks[0] marks[1] marks[2] marks[3] marks[4] marks[5] marks[6] marks[7] marks[8] marks[9]

Memory representation of an array of 10 elements

Operations on Arrays

e Traversing an array
 Inserting an element in an array

e Searching an element in an array

Deleting an element from an array
e Merging two arrays

e Sorting an array in ascending or descending order

Traversing an Array

e Traversing the data elements of an array A can include
printing every element, counting the total number of
elements, or performing any process on these elements.

e Array is a linear data structure (because all its elements
form a sequence), traversing its elements is very simple
and straightforward

Step 1: [INITIALIZATION] SET I = lower bound
Step 2: Repeat Steps 3 to 4 while I <= upper_bound
Step 3: Apply Process to A[I]
Step 4: SET I=1+1
[END OF LOOP]
Step 5: EXIT

Algorithm for array traversal

Inserting an Element in an Array

e |If an element has to be inserted at the end of an
existing array, the

* n the task of insertion is quite simple.

Step 1: Set upper bound = upper bound + 1
Step 2: Set A[upper bound] = VAL
Step 3: EXIT

Algorithm to append a new element to an
existing array

Insert an Element in the Middle of an Array

e The algorithm INSERT will be declared as INSERT (A, N,
POS,VAL). The arguments are

() A, the array in which the element has to be inserted

(b) N, the number of elements in the array

(c) POS, the position at which the element has to be
inserted

o (d) VAL. the value that has to be inserted

Step 1: [INITIALIZATION] SET I = N
Step 2: Repeat 5teps 3 and 4 while I »>= POS
Step 3: SET A[I + 1] = A[I]
Step 4: SET I =1 -1
[END OF LOOP]
S5tep 5: SET N =N+ 1
Step 6: SET A[POS] = VAL
Step /7: EXIT

Algorithm to insert an element in the middle
of an array.

Example

Initial pata[] 1s given as below.

45
Data[0]

23
Data[1]

34
Data[2]

12
Data[3]

o6
Data[4]

20
Data[5]

Calling INSERT (Data, 6, 3, 100) will lead to the following processing in the array:

45 23 34 12 56 20 20
Data[0o] Data[l] Data[2] Data[3] Data[4] Data[5] Data[é]
45 23 34 12 56 o6 20
Data[0] Data[l] Data[2] Data[3] Data[4] Data[5] Data[é]
45 23 34 12 12 o6 20
Data[0] Data[l] Data[2] Data[3] Data[4] Data[5] Data[é6]
45 23 34 100 12 o6 20
Data[0] Data[l] Data[2] Data[3] Data[4] Data[5] Data[e]

Deleting an Element from an Array

e Deleting an element from an array means removing a
data element from an already existing array.

e |f the element has to be deleted from the end of the
existing array, then the task of deletion is quite simple.

* We just have to subtract | from the upper bound.

Step 1: SET upper_bound = upper bound - 1
Step 2: EXIT

Algorithm to delete the last element of
an array

Delete an element from the middle of

an array
e The algorithm DELETE will be declared as DELETE(A,
N, POS).The arguments are:

(a) A, the array from which the element has to be
» deleted

(b) N, the number of elements in the array

(c) POS, the position from which the element has to
be deleted.

Step 1: [INITIALTIZATION] SET I = POS
Step 2: Repeat Steps 2 and 4 while I <= N - 1
Step 3: SET A[I] = A[I + 1]
Step 4: SET I =1 + 1
[END OF LOOP]
S5tep 5: SET N =N - 1
Step 6: EXIT

Algorithm to delete an element from the
middle of an array

Example

DELETE (Data, 6, 2) Will lead to the following
processing in the arrayv.

45 23 34 12 56 20
Data[0] Data[l] Data[2] Data[2] Data[4] Data[5]
45 23 12 12 o6 20
Data[0] Data[l1l] Data[2] Data[2] Data[4] Data[5]
45 23 12 96 56 20
Data[0] Data[l1l] Data[2] Data[2] Data[4] Data[5]
45 23 12 o6 20 20
Data[0] Data[l1l] Data[2] Data[2] Data[4] Data[5]
45 23 12 56 20
Data[0] Data[l1] Data[2] Data[32] Data[4]

Deleting elements from an array

Merging Two Arrays

e Merging two arrays in a third array means first copying
the contents of the first array into the third array and
then copying the contents of the second array into the
third array.

* Hence, the merged array contains the contents of the
first array follow ed by the contents of the second array.

Array 1-

Array 2-

Array 3-

90 | 5% | 89 | 77 | 69
45 | 88 | 76 | 99 | 12 | 58 | 81
90 | 5 | 89 [77 | 69 | 45 | 8 | 76 | 99 | 12 | 58 | @1

Merging of two unsorted arrays

Limitations of Arrays

e Arrays have a fixed dimension

e Once the size of the array decided it can not be increased

or decreased during execution.
 Insertion and deletion operations are pretty tedious.

e To over come these limitations we can use LINKED LIST.

Linked List

e A linked list is a series of connected nodes.

e Linked list is a collection of nodes.

Node

Data Pointer

e Each node contains two fields
> Data Field(any type)
> Address Field (Pointer to the next node in the list)

Linked List

 Head is a pointer to the first node.
e The last node of the Linked list points to NULL.

Head 05 10 20

* Insertion and deletion operations are easily performed
using Linked List.

e A Linked list can easily grow and shrink in size.(Dynamic)

 With a linked list, no need to move other nodes. Only
need to reset some pointers.

Types of Linked List
 Singly Linked List
e Doubly Linked List

e Circular Linked List

Singly Linked List

e ASLL is a LL in which each node contains only one linked
field pointing to the next node in the list.

o A singly linked list is the simplest type of linked list.

o A singly linked list allows traversal of data only in one
way.

START

—» 1| 2| ™ 3| A | S| —T™E| ™| X

Singly linked list

Declaration for Linked List

Struct Node

{

int data;

position *next;

Operations on Singly Linked List

e Traversing a Linked List

e IsEmpty and IsLast

* Find

* Find Previous and Find Next

* Inserting a New Node in a Linked List

o Case |:The new node is inserted at the beginning.

o Case 2:The new node is inserted at the end.

> Case 3:The new node is inserted after a given node.

o Case 4:The new node is inserted before a given node.
e Deleting a New Node from a Linked List

o Case |:The first node is deleted.

> Case 2:The last node is deleted.

> Case 3:The node after a given node is deleted.

e Merging two linked List

Traversing a Linked List

Traversing a linked list means accessing the nodes of the

list in order to perform some processing on them.

Remember a linked list always contains a pointer variable
START which stores the address of the first node of the

list.

End of the list is marked by storing NULL or —I in the
NEXT field of the last node.

For traversing the linked list, we also make use of another
pointer variable PTR which points to the node that is

currently being accessed.

Traversing a Linked List

Step 1: [INITIALIZE] SET PTR = START

Step 2: Repeat Steps 3 and 4 whille PTR != NULL
Step : Apply Process to PTR— DATA
Step : SET PTR = PTR — NEXT

[END OF LOOP]
Step 5: EXIT

Algorithm for traversing a linked list

Step 1: [INITIALIZE] SET COUNT = 0O
Step 2: [INITIALIZE] SET PTR = START

Step 3: Repeat Steps 4 and 5 while PTR != NULL
Step 4: SET COUNT = COUNT + 1
Step 5: SET PTR = PTR — NEXT

[END OF LOOP]
Step 6: Write COUNT
Step 7: EXIT

Algorithm to print the number of nodes in a
linked list

Example

e A B C

Head 05 10 20

Algorithm to Insert an element in the list

void Insert(int X, List L, Position P)
{
position Newnode;

Newnode=malloc(sizeof(Struct Node));
lf(Newnode!=NULL)

{
Newnode->Element=X;
Newnode->Next=P->Next;
P->Next=Newnode;

}

Example

e Before Insertion

1| /7|13 —>i
START
e To Insert: After 3 9
e After Insertion

1| ——» 7| 7 3 4 | —

START PREPTRi TPTR

9
NEW_NODE

1| 7| 3| 49| —

START

Find Routine(Algorithm)

Position Find(int X, List L)
{

Position P;

P=L->Next;

while(P!=NULL && P->Element!=X)
P=P->Next;

return P;

FindNext Algorithm

Position FindNext(int X, List L)
{

Position P;

P=L->Next;

while(P->Next!=NULL && P->Element!=X)
P=P->Next;

return P->Next;

Find Previous Algorithm

Position FindPrevious(int X, List L)

{

Position P;

P=L;

while(P->Next!=NULL && P->Next->Element!=X)
P=P->Next;

return P;

Deleting the Node

void Delete(int X, List L)
{
Position=L->Next;
PrePosition=Position;
while(Position->Element!=X)
{
PrePosition=Position;
Position=Position->Next;
}
Temp=Position;
PrePosition->Next= Position->NeXxt;
Free Temp;

Example

o Before Deletion : X=B

Head 05 10 20

o After Deletion:

Merging Two SLL

void MergeSLL(List LI,List L2)

{

P=LI->Next;
while(P->Next!=NULL)
P=P->Next;
P->Next=L2->Next;
Free(L2->Next);

Doubly Linked Lists

e A doubly linked list or a two-way linked list is a more
complex type of linked list.

e A DLL has Three fields namely
> Data Field

o Forward Link — Points to the successor node

> Backward Link — Points to the predecessor node.

START

- .

] r
1] 2 €—] 3 - 4 S 5

¥
<

Doubly linked list

Doubly Linked Lists

The BLINK field of the first node and the FLINK field of

the last node will contain NULL.

The BLINK field is used to store the address of the
preceding node, which enables us to traverse the list in the

backward direction.

A DLL provides the ease to manipulate the elements of
the list as it maintains pointers to nodes in both the

directions (forward and backward).

The main advantage of using a doubly linked list is that

it makes searching twice as efficient.

Structure Declartion

Struct Node

{

int Element;
Struct Node *FLINK;
Struct Node *BLINK;

Operations on Doubly Linked List

* Inserting a New Node in a Doubly Linked List
> Case |:The new node is inserted at the beginning.
o Case 2:The new node is inserted at the end.
> Case 3:The new node is inserted after a given node.

> Case 4:The new node is inserted before a given node.

e Deleting a New Node from a Doubly Linked List
o Case |:The first node is deleted.

o

Case 2:The last node is deleted.

o

Case 3:The node after a given node is deleted.

o

Case 4:The node before a given node is deleted.

(@)

Merging two linked List

Routine to Insert an Element in a DLL

void Insert(int X, List L, Position P)

{

Struct Node *Newnode;

Newnode=malloc(sizeof(Struct Node));
if(Newnode!=NULL)

{
Newnode->Element=X;
Newnode->FLINK=P->FLINK;
P->FLINK->BLINK=Newnode;
P->FLINK=Newnode;
Newnode->BLINK=P;

}

Routine to Delete an Element after a given node

void Delete(int X, List L)
{

Position P;

P=L->Next;

while (P->Element!= X)
P=P->FLINK;

P->BLINK->FLINK=P->FLINK;

P->FLINK->BLINK=P->BLINK;

Example

e Before Deletion

k1 le(__' 100 3 3ﬂﬂ::nn 4 4ﬂﬂﬁ3nn] sunﬁ4uu ﬁnu'ﬂ__" 500 §
Start 100 200 300 400 200 600
e To Delete: 7
o After Deletion
—p —p —p —
X1 — 3 Vad 4 — 8 Vel 9

START

Merging Two DLL
void MergeDLL(List L1,List L2)

{

Pl=LI->Next;
P2=L2->Next;
while(P1->FLINK!=NULL)
PI=PIl-> FLINK;

Pl-> FLINK =P2;
P2->BLINK=PI
Free(L2->Next);

Circular Linked List

e In a circular linked list, the last node contains a pointer

to the first node of the list.
e CLL can be implemented with or without headers.

e Types:
o Singly Linked Circular List

> Doubly Linked Circular List

e A circular linked list has no beginning and no ending.

e Circular linked lists are widely used in operating

systems for task maintenance.

Singly Linked Circular List

e A Singly Linked Circular List is a Linked List in which the
last node of the list points to the first node.

START
\—» 1 > 2 > 3 > 4 » 5 > 6 > 7
A
Circular linked list
START

1 DATA NEXT

L > 1 H 4
2
3
4 E 7
5
6
7 L 8
8 L 10
9
10 0 1

Memory representation
of a circular linked list

Operations on SLCL

* Inserting a New Node in a Circular Linked List

o Case |: The new node is inserted at the beginning of the circular

linked list.

o Case 2: The new node is inserted at the end of the circular linked

list.

e Deleting a Node from a Circular Linked List
> Case |:The first node is deleted.

o Case 2:The last node is deleted.

Insertion at First

void Insertion(List L, int X)

{

Newnode=malloc(sizeof(Struct node));
if(Newnode!=NULL)

{

Newnode->Element=X;
P=L->Next;
while(P->Next!=P)
P=P->Next;
P->Next=Newnode;
Newnode->Next=L->Next;
L->Next=Newnode;

Example

e Before Insertion

¥
i =9
|
*
|
|

1] - 7| — 3 L 6 | —» 5
5TAHT+

Allocate memory for the new node and initialize its DATA part to 9.

e To insert at first >

e After Insertion

9 M 1| T M| A L TR e| TS

START A

Deletion at First

void Delete(List L)

{

P=L->Next;
START=P;
Temp=P->Next;
while(P->Next!=START)
P=P->Next;
P->Next=Temp;
L->Next=Temp;
Free(Temp);
Free(START);

Example
o Before Deletion

100 200 300 400 500 600 700

1 oo 7| ™3| >4 » 2| — 1 6| —TM 5|0

START A

o After Deletion

START A PTR

Circular Doubly Linked List

A circular doubly linked list or a circular two-way linked
list which contains a pointer to the next as well as the
previous node in the sequence.

The circular doubly linked list does not contain NULL in
the previous field of the first node and the next field of
the last node.

Rather, the next field of the last nhode stores the address
of the first node of the list,i.e., START.

Similarly, the previous field of the first field stores the
address of the last node.

e Tl 3

B

4001, 1300(7 (500

)
«—

40 8 600}(_ 500 9 [100

T4

208¢— 100 7 | 3001200

Start 100

200 300 400 500 600

Insertion at First

- i Tt

Step

Step
Step
Step
Step
Step
Step

Step
Step
Step
Step

Step
Step

1:

S s A ¥y R =S VU N

10:
11:

12:
13:

IF AVAIL = NULL
Write OVERFLOW
Go to Step 13
[END OF IF]
SET NEW NODE = AVAIL
SET AVAIL = AVAIL — NEXT
SET NEW NODE — DATA = VAL
SET PTR = START
Repeat Step 7 while PTR —=NEXT != START
SET PTR PTR — NEXT
[END OF LOOP]
SET PTR — NEXT = NEW_NODE
SET NEW _NODE —= PREV = PTR
SET NEW NODE — NEXT = START
SET START — PREV = NEW_NODE
SET START = NEW NODE
EXIT

Algorithm to insert a new node at the beginning

Example

e Before Insertion

[600

o

0be—{100 3 | 30

)
<—

200

.

400

TV

300

7 1500

400/ 8

600'(_ 300

100

Start 100
e To Insert : Address: 700

200

e After Insertion

300

400

500

10

600

600

10

100

700 1

700

20*4-_: 1 >

306

jZGO

400

T4

0 !

500;:1 40

! 6ooﬂ 300

mr

100

200

300

400

500

600

Deletion at Last

Step

Step
Step
Step

Step
Step

Step
Step

13

IIP"-JEI"I'-J'I

IF START = NULL
Write UNDERFLOW
Go to Step 8
[END OF IF]

: SET PTR = START
: Repeat Step 4 while PTR —= NEXT != START

SET PTR = PTR —> NEXT
[EI"'.II} OF LOOP]

: SET PTR —= PREV —= NEXT = START
: SET START —>PREV = PTR —> PREV

: FREE PTR
: EXIT

Algorithm to delete the last node

Example

e Before Deletion

[600 1

20#2

)

300

200| 4

400

T4

300/ /

500

Start 100

e To Delete: 9
o After Deletion

300

500 1

)

2i—

3 {300

400

400/ §

600#_ 500

100

500

14

Start 100

200

4 (400

T4

300

500 —

404 !

lOOt

300

400

500

Applications of Linked List

e Polynomial ADT
e Radix Sort

o Multilist

Polynomial ADT

Linked lists can be used to represent polynomials and
the different operations that can be performed on
them.

Polynomial Representation

Every individual term in a polynomial consists of two
parts, a coefficient and a power.

Consider a polynomial 6x3 + 9x? + 7x + |.

Here, 6,9, 7, and | are the coefficients of the terms that
have 3,2, |,and 0 as their powers respectively.

Every term of a polynomial can be represented as a
node of the linked list.

6|3 | T 9| 2 > /|1 = 1|0 | X

Linked representation of a polynomial

Structure Declaration for Polynomial ADT

Struct Poly

{
int coeff;
int power;

Struct Poly *Next;

Plistl,*list2,*list3;

Creation of the Polynomial

poly create(poly *head|l,poly *newnodel)

{
poly *ptr;
if(head | ==NULL)
{
head | =newnodel;
return(headl);

}

else

{
ptr=head|l;
while(ptr->next!=NULL)
ptr=ptr->next;
ptr->next=newnodel;

}

return headl;

Addition of Two Polynomial

Void add()

{
poly *ptrl,*ptr2,*newnode;
ptrl=listl;
ptr2=list2;
while(ptr I!=NULL && ptr2!=NULL)
{

newnode=malloc(sizeof(Struc poly));

if(ptr | > power==ptr2->power)

{
newnode—> coeff=ptr| = coeff+ptr2 - coeff;
newnode—>power=ptr| > power;
newnode—>next=NULL:
list3=create(list3,newnode);
ptr|=ptr| 2> next;
ptr2=ptr2->next;

Addition of Two Polynomial (Cont.,)

else

{
if(ptr | > power>ptr2->power)

{
newnode-> coeff=ptr| = coeff;
newnode—>power=ptr | = power;
newnode—>next=NULL:
list3=create(list3,newnode);

ptr=ptr| 2> next;

Addition of Two Polynomial (Cont.,)

else

{

newnode-> coeff=ptr2-> coeff;
newnode—>power=ptr2->power;
newnode—>next=NULL:
list3=create(list3,newnode);
ptr2=ptr2->next;

Example
ptrl>6x3 + 9x2 + 7x + |,
ptr2>3x3 + 6x2 + 2x + 8.

ptr3>9x3 + [5x% + Ix + 9.

Part B

I. Explain about classification of DS.
2. Write short notes on List ADT.

3. How can you insert an element after a position in a SLL?
Explain with suitable example and algorithm.

4. Define DLL.Write the operations performed on that.

5. Write the operations performed on Doubly Linked
Circular List.

6. Write the algorithm to insert a new node at First into
the Singly Linked Circular List. Explain with an example.

How to answer Part B and Part C Questions?

» Definition - Should be very Clear
o Algorithm

* Example — Should comprise like Before insertion, To insert,

After Insertion

e Neat Diagram Representation (If necessary)

