
UNIT III - NON LINEAR DATA STRUCTURES –
TREES

Tree ADT – Tree traversals - Binary Tree ADT –

Expression trees – Applications Of Trees – Binary

Search Tree ADT –Threaded Binary Trees- AVL

Trees – B-Tree - B+ Tree - Heap – Applications of

heap.

TREES

❖ A tree is recursively defined as a set of one or more

nodes where one node is designated as the root of the

tree and

❖ All the remaining nodes can be partitioned into non-

empty sets each of which is a sub-tree of the root.

❖ A tree structure means that the data are organized so

that items of information are related by branches.

❖ Trees organize information hierarchically.

❖ A tree is a collection of elements (nodes)

TREES EXAMPLE

TREE TERMINOLOGIES
❖ Root – A node which does not have a parent. Root

is A.

❖ Node – Item of Information.

❖ Leaf – A node which does not have a child is called

Leaf or Terminal node. Here B,K,L,G,H,M,J are

leafs.

❖ Siblings - Children of the same parents are said to

be siblings.

❖ Path –

❖ Length –

❖ Degree -

TREE TERMINOLOGIES
❖ Level

❖ Depth

❖ Height

❖ Ancestor node

❖ Descendant node

TREE TERMINOLOGIES
❖ Level

❖ Depth

❖ Height

❖ Ancestor node

❖ Descendant node

BINARY TREE
❖ Binary Tree is a tree in which no node can have more

than two children.

❖ A binary tree is a hierarchical data structure in which

each node has at most two children generally referred

as left child and right child.

❖ Maximum number of nodes at level i of a binary tree is

2i+1

❖ General Tree has many number of children.

BINARY TREE NODE DECLARATION
Struct TreeNode

{

int Element;

Struct TreeNode *Left;

Struct TreeNode *Right;

}

TYPES OF BINARY TREES
❖ Full Binary Tree: A full BT of height H has 2H+1-1

nodes.

❖ A full binary tree (sometimes proper binary tree or

2-tree) is a tree in which every node other than the

leaves has two children.

COMPLETE BINARY TREE
❖ A complete binary tree is a binary tree in which every

level, except possibly the last, is completely filled, and all

nodes are as far left as possible.

❖ A complete BT of height H has between 2H and 2H+1-1

nodes.

❖ In Last level, the elements should be filled from left to

right.

❖ A FBT can be a CBT, but all CBT is not a FBT.

REPRESENTATION OF A BINARY
TREES
There are two ways for representing BT

❖ Linear Representation

❖ Linked Representation

LINEAR REPRESENTATION
❖ The elements are represented using arrays.

❖ For any element in position i,

❖ The left child is in position (2i)

❖ The right child is in position (2i+1)

❖ The parent is in position (i/2)

LINKED REPRESENTATION
❖ The elements represented using pointers.

❖ Each node in linked representation has three fields.

Namely

❖ Pointer to the Left Subtree

❖ Data Field

❖ Pointer to the Right Subtree

❖ In Leaf nodes both pointer fields are assigned as

NULL.

LINKED REPRESENTATION

LINKED REPRESENTATION

FIRST CHILD NEXT SIBLING
REPRESENTATION
❖ In this type representation, cellspace contains three

field’s namely leftmost child, label and rightmost

child.

❖ A node in identified with the index of the cell in

cellspace that represents it as a child.

❖ Then the next pointers of cellspace point to right

siblings and the information contained in the

nodespace array can be held by introducing a field

leftmost child in cellspace.

EXAMPLE

TREE TRAVERSAL

❖ Tree traversal is a method for visiting all the node in

the tree exactly once.

❖ There are 3 types of tree traversal techniques

❖ Inorder Traversal

❖Preorder Traversal

❖Postorder Traversal

INORDER TRAVERSAL – (LEFT, ROOT,
RIGHT)
The Inorder traversal of a Binary tree is performed as

❖ Traverse the LEFT subtree in Inorder

❖ Visit the ROOT

❖ Traverse the RIGHT subtree in Inorder

Ex : Inorder : D B E A F C G

EXAMPLE
❖ Inorder : A B C D E G H I J K

RECURSIVE ROUTINE FOR INORDER
void inorder(Tree T)

{

if (T!=NULL)

{

inorder (T🡪 left);

printElement (T🡪 Element);

inorder (T🡪 right);

}

}

PREORDER TRAVERSAL - (ROOT, LEFT
,RIGHT)
The Preorder traversal of a Binary tree is performed

as

❖ Visit the ROOT

❖ Traverse the LEFT subtree in Inorder

❖ Traverse the RIGHT subtree in Inorder

Ex: Preorder : A B D E C F G

EXAMPLE
❖ Preorder : D C A B I G E H K J

RECURSIVE ROUTINE FOR
PREORDER
void preorder(Tree T)

{

if (T!=NULL)

{

printElement (T🡪 Element);

preorder (T🡪 left);

preorder (T🡪 right);

}

}

POSTORDER TRAVERSAL - (LEFT ,RIGHT,
ROOT)
The Postorder traversal of a Binary tree is performed

as

❖ Traverse the LEFT subtree in Inorder

❖ Traverse the RIGHT subtree in Inorder

❖ Visit the ROOT

Ex: Postorder : D E B F G C A

EXAMPLE
❖ Postorder : B A C E H G J K I D

RECURSIVE ROUTINE FOR
POSTORDER
void preorder(Tree T)

{

if (T!=NULL)

{

postorder (T🡪 left);

postorder (T🡪 right);

printElement (T🡪 Element);

}

}

EXPRESSION TREE

❖ It is a binary tree in which the leaf nodes are

operands and the interior nodes are operators.

❖ Like binary tree, Expression tree can also traversed

by Inorder, Preorder and Postorder traversal.

CONSTRUCTING AN EXPRESSION
TREE
❖ Read one symbol at a time from the postfix

expression.

❖ Check whether the symbol is an operand or

operator

(a) If the symbol is an operand, create a one

node tree and push a pointer on to the stack.

(b) If the symbol is an operator pop two pointers

from the stack namely T1 and T2 and form a

new tree with root as the operator and T2 as a left

child and T1 as a right child. A pointer to this

new tree is then pushed onto the stack.

EXAMPLE
Expression : Infix : a*(b+c)/d 🡪 Postfix: abc+*d/

APPLICATIONS OF TREE

❖ Binary Search Tree.

❖ Expression Tree.

❖ Threaded Binary Tree.

❖ B and B+ Tree.

BINARY SEARCH TREE
❖ BST is a binary tree in which each node is

systematically arranged that is left child has less

value than its parent node and right child value has

greater value than its parent node.

❖ The searching of any node in such a tree becomes

efficient in BST.

BINARY SEARCH TREE

❖ Every BST is a Binary Tree.

❖ All Binary Trees need not be a BST.

❖ left_subtree (keys) < node (key) ≤ right_subtree (keys)

Node Declartion

Struct node

{

int data;

struct node *leftChild;

struct node *rightChild;

};

ADVANTAGE OF BST

❖ The major advantage of binary search trees over

other data structures is that the related sorting

algorithms and search algorithms such as in-order

traversal can be very efficient.

OPERATIONS ON BST

❖ Insertion

❖ Find

❖ Find Min

❖ Find Max

❖ Deletion

Case 1 : Node with no Children

Case 2: Node with One Child

Case 3: Node with Two Child

INSERTION ALGORITHM
SearchTree Insert(int X,SearchTree T)

{

if(T==NULL)

{

T=malloc(sizeof(Struct TreeNode));

if(T!=NULL)

{

T🡪 Element=x;

T🡪 Left=NULL;

T🡪 Right=NULL;

}

}

else

If(X<T🡪 Element)

T🡪 Left=Insert(X,T🡪 Left);

else

If(X>T🡪 Element)

T🡪 Right=Insert(X,T🡪 Right);

return T;

}

INSERTION ALGORITHM – EXAMPLE 1

INSERTION ALGORITHM – EXAMPLE
2

INSERTION ALGORITHM – EXAMPLE
3

FINDMIN

❖ This operation returns the position of the smallest

element in the tree.

❖ To perform FindMin start at the root and go left as

there is a left child.

❖ The stopping point is the smallest element.

FIND MIN

NON RECURSIVE RECURSIVE

int FindMin(SearchTree T)

{

if(T!=NULL)

while(T🡪 Left!=NULL)

T=T🡪 Left;

return T;

}

int FindMin(SearchTree T)

{

if(T==NULL)

return NULL;

else if(T🡪 Left==NULL)

return T;

else

return FindMin(T🡪 Left);

}

FINDMAX

❖ This operation returns the position of the largest

element in the tree.

❖ To perform FindMax start at the root and go right as

there is a left child.

❖ The stopping point is the largest element.

FIND MAX

NON RECURSIVE RECURSIVE

int FindMax(SearchTree T)

{

if(T!=NULL)

while(T🡪 Right!=NUL

L)

T=T🡪 Right;

return T;

}

int FindMax(SearchTree T)

{

if(T==NULL)

return NULL;

else
if(T🡪 Right==NULL)

return T;

else

return
FindMax(T🡪 Right);

}

DELETION

❖ Deletion operation is the complex in BST.

Case 1 : Node with no Children

Case 2: Node with One Child

Case 3: Node with Two Child

CASE 1 : NODE WITH NO CHILDREN

CASE 2: NODE WITH ONE CHILD

CASE 3: NODE WITH TWO CHILD

STRATEGY FOR CASE 3

❖ Strategy 1 : The general strategy is to replace the

data if the node to be deleted with its smallest data

of the right subtree and recursively delete that

node.

❖ Strategy 2: Using Inorder

🡪 First find the successor (or predecessor) of the this node.

🡪 Delete the successor (or predecessor) from the tree.

🡪 Replace the node to be deleted with the successor

(or predecessor)

CASE 3: NODE WITH TWO CHILD

DELETION ROUTINE
SearchTree Delete(int X, SearchTree T)

{

int Tmpcell;

if(T==NULL)

Error(“Tree is Empty”);

else

if(X<T🡪 Element)

T🡪 Left=Delete(X,T🡪 Left);

else

if(X>T🡪 Element)

T🡪 Right=Delete(X,T🡪 Right);

DELETION ROUTINE – CONT.,
else //Two Children (Replace with smallest data in the right subtree)
if(T🡪 Left && T🡪 Right)
{

Tmpcell=FindMin(T🡪 Right);
T🡪 Element=Tmpcell🡪 Element;
T🡪 Right=Delete(T🡪 Element;T🡪 Right);

}
else //One or Zero Children
{

Tmpcell=T;
if(T🡪 Left==NULL)

T=T🡪 Right;

if(T🡪 Right==NULL)
T=T🡪 Left;

Free(Tmpcell);
}

return T;
}

THREADED BINARY TREE
❖ In TBT the leaf nodes are having the NULL values in

the left and right link fields.

❖ To avoid the NULL value the threads are used.

❖ The threads are nothing but the links to predecessor

and successor nodes.

❖ Instead of left NULL pointer the link points to Inorder

predecessor.

❖ Instead of right NULL pointer the link points to Inorder

successor.

THREADED BINARY TREE

THREADED BINARY TREE

THREADED BINARY TREE

❖ Inorder : 50 60 65 70 78 80 90 95 98

TYPES OF TBT

There are two types

❖ One way Threading

❖ Two way Threading

ONE WAY THREADING

❖ Accordingly, in the one way threading of T, a thread

will appear in the right field of a node and will point

to the next node in the in-order traversal of T.

❖ See the bellow example of one-way in-order

threading.

EXAMPLE

❖ Inorder of bellow tree is: D,B,F,E,A,G,C,L,J,H,K

TWO WAY THREADING

❖ A thread will also appear in the left field of a node

and will point to the preceding node in the in-order

traversal of tree T.

❖ Furthermore, the left pointer of the first node and

the right pointer of the last node (in the in-order

traversal of T) will contain the null value when T

does not have a header node.

EXAMPLE
❖ Here, right pointer=next node of in-order traversal

and left pointer=previous node of in-order traversal

❖ Inorder of bellow tree is: D,B,F,E,A,G,C,L,J,H,K

AVL TREE – (ADELSON, VELSKILL & LANDIS)

❖ AVL tree is a binary search tree except that for

every node in the tree, the height of the left and

right subtree can differ by almost 1.

❖ The height of the empty tree is defined to be -1.

❖ Balance factor:

Height of the Left Subtree - Height of the Right

Subtree

AVL TREE – (ADELSON, VELSKILL & LANDIS)

❖ For an AVL tree all balance factor should be +1,0,-

1.

❖ If the balance factor of any node in an AVL tree

becomes less than -1 or greater than 1, then the

tree has to be balanced by making either single or

double rotations.

ROTATIONS
An AVL tree causes imbalance, when any one of the
following conditions occur.

❖ Case 1: An insertion into the left subtree of the left child.

❖ Case 2: An insertion into the right subtree of the left child.

❖ Case 3: An insertion into the left subtree of the right child.

❖ Case 4: An insertion into the right subtree of the right

child.

These imbalances can be overcome by

❖ 1.Single Rotation – Performed to fix Case 1 and Case 4.

❖ 2.Double Rotation – Performed to fix Case 2 and Case

3.

CASE 1: AN INSERTION INTO THE LEFT SUBTREE OF THE LEFT
CHILD.

❖ To Insert :1

CASE 4: AN INSERTION INTO THE RIGHT SUBTREE OF THE RIGHT
CHILD.

❖ To insert : 10

CASE 2: AN INSERTION INTO THE RIGHT SUBTREE OF THE
LEFT CHILD.

❖ Insertion of either ’12’ and ‘18’

CASE 4: AN INSERTION INTO THE RIGHT SUBTREE OF THE RIGHT
CHILD.

CASE 3: AN INSERTION INTO THE LEFT SUBTREE OF THE
RIGHT CHILD.

❖ To Insert : 11 and 14

CASE 3: AN INSERTION INTO THE LEFT SUBTREE OF THE RIGHT
CHILD.

EXAMPLE

Routine for Insertion
AVLTree Insert(AVLTree T,int x)

{

if(T==NULL)

{

T=malloc(sizeof(Struct AVLNode));

if(T==NULL)

Error(“Out Of Space”);

else

{

T→ Data=X;

T→ Height=0;

T→ Left=NULL;

T→ Right = NULL;

}

}

Routine for Insertion - Contd.,
else

{

if(X<T→ Data)

{

T→ Left=Insert(T→ Left,X);

if(Height(T→ Left) - Height(T→ Right)==2)

if(X<T→ Left→ data)

T=SingleRotateWithLeft(T);

else

T=DoubleRotateWithLeft(T);

}

else

Routine for Insertion - Contd.,
if(X>T→ Data)

{

T→ Right=Insert(T→ Right,X);

if(Height(T→ Right) - Height(T→ Left)==2)

if(X>T→ Right→ data)

T=SingleRotateWithRight(T);

else

T=DoubleRotateWithRight(T);

}

T→ Height=Max(Height(T→ Left),Height(T→ Right))+1;

return T;

}

B-TREE
A B-Tree of order m is an m-way search tree with the

following properties.

❖ The root node must have atleast 2 child nodes and

atmost m child nodes.

❖ All internal nodes other than root node must hav e

atleast m/2 to m non empty child nodes.

❖ The number of keys in each internal node is one less

than its number of child nodes, which will partition

the keys of the tree into subtree.

❖ All internal nodes are at the same level.

Example
 B-Tree is known as a self-balancing tree as its nodes are

sorted in the inorder traversal.

Operation on B-Tree

❖ Insertion

❖ Deletion

Insertion

❖ Case 1: When the node X of the B-Tree of order m

can accommodate the key K, then it is inserted in

that node and the number of the child pointer fields

are appropriately upgraded.

Case 1 - Example

❖M=5

❖ Before Insertion

❖ To Insert : 23

Case 2
❖ If the node is full then the key K is apparently inserted into

the list of elements and the list is splitted into two on the

same level at it median(Kmedian).

❖ The keys which are less than Kmedian are placed in the Xleft

and those greater than Kmedian are placed at Xright

❖ The median key is not placed into either of the two new

nodes, but instead moved up the tree to be inserted into

the parent node of X.

❖ This insertion inturn will call case 1 and 2 depending upon

whether the parent node can accommodate or not.

Case 2 - Example

❖ Before Insertion

❖ To insert 93

❖ After Insertion

Deletion – Case 1

❖ If the key K to be deleted belongs to a leaf nodes

and its deletion does not result in the node having

less than its minimum number of elements.

❖ Then delete the key from the leaf and adjust child

pointers.

Case 1 - Example

❖ Before Deletion

❖ To delete: 17

❖ After Deletion

Case 2

❖ If the key belongs to a non leaf node.

❖ Then replace K with largest key KLmax in the left

subtree of K or the smallest key KRmin from the

right subtree of K and then delete KLmax or KRmin

from the node, which in turn will trigger case 1 or

2.

Case 2 - Example

❖ Before Deletion

❖ To Delete : 25

❖ After Deletion

Case 3

❖ If the key K to be deleted from a node leaves it with less

than its minimum number of elements, then the elements

may be borrowed either from left or right sibling.

❖ If the left sibling node has an element to spare, then move

the largest key KLmax in the left sibling node to the parent

node and the element P in the parent is moved down to set

the vacancy by the deletion of K in node X.

❖ If the left sibling node has no element to spare then move

to case 4.

Case 3 - Example

❖ Before Deletion

❖ To Delete: 39

❖ After Deletion :

Case 4

❖ If the key to be deleted from a node X leaves it with

less than its minimum number of elements and both

the sibling nodes are unable to spare an element.

❖ Then the node X is merged with one of the sibling

nodes along with intervening element P in the parent

node.

Case 4 – Example

❖ Before Deletion

❖ To Delete : 36

❖ After Deletion

B+ Tree

❖ B+ tree eliminates the drawback B-tree used for indexing

by storing data pointers only at the leaf nodes of the tree.

❖ The structure of leaf nodes of a B+ tree is quite different

from the structure of internal nodes of the B tree.

❖ It may be noted here that, since data pointers are present

only at the leaf nodes, the leaf nodes must necessarily

store all the key values along with their corresponding data

pointers to the disk file block, in order to access them.

B+ Tree

❖Moreover, the leaf nodes are linked to providing

ordered access to the records.

❖ The leaf nodes, therefore form the first level of the

index, with the internal nodes forming the other

levels of a multilevel index.

❖ Some of the key values of the leaf nodes also

appear in the internal nodes, to simply act as a

medium to control the searching of a record.

Example

B Tree Vs. B+ Tree
S. No B Tree B+ Tree

1
All internal and leaf nodes have data

pointers.

Only leaf nodes have data pointers.

2
Since all keys are not available at

leaf, search often takes more time.

All keys are at leaf nodes, hence

search is faster and accurate.

3
No duplicate of keys is maintained in

the tree.

Duplicate of keys are maintained and

all nodes are present at leaf.

4
Insertion takes more time and it is

not predictable sometimes.

Insertion is easier and the results are

always the same.

5

Deletion of internal node is very

complex and tree has to undergo lot

of transformations.

Deletion of any node is easy because

all node are found at leaf.

6
Leaf nodes are not stored as

structural linked list.

Leaf nodes are stored as structural

linked list.

7
No redundant search keys are

present.

Redundant search keys may be

present.

